
Message Passing Between Loosely-Coupled Threads by Means of

Flexible Ring Buffers

Martin Lottermoser
http://home.htp-tel.de/lottermose2

Version 1.8 (2014-06-12)

Contents

1 Message Passing Through Shared Memory 2

2 The Basics 2
2.1 Fundamental Building Blocks and Their Properties . 2
2.2 Principles of Operation . 3

3 Initialization 4
3.1 Prerequisite Knowledge . 4
3.2 Initial State . 4
3.3 Procedure for the Writer . 6
3.4 Procedure for the Reader . 6
3.5 Assertions . 7
3.6 Random Initial Values . 8
3.7 Permanently Failing Initialization . 8
3.8 Application Beyond FRBs . 9

4 Normal Operation 9
4.1 Buffer Area Content . 9

4.1.1 Length Field . 10
4.1.2 Padding Conventions . 10

4.2 Writing . 11
4.3 Reading . 11

Appendix 12

1

http://home.htp-tel.de/lottermose2

2 Message Passing Between Loosely-Coupled Threads by Means of Flexible Ring Buffers

1 Message Passing Through Shared Memory

There are a number of situations where one wishes to asynchronously exchange messages between different
threads of execution. The first thread should be able to take some data from its own storage area, “send”
it to the other, and continue working. The second thread should then, at a later time when it is ready, be
able to discover that a message has been sent and “receive” it, copying the data into its own private storage
area. Typically we want to have certain assurances concerning the properties of the data transfer:

• Messages are not modified in passing.

• Messages are not lost or, if that can happen, recipient or sender are informed that something has been
lost.

• If more than one message can be “in transit” at the same time, sender and recipient know in advance
how the order of sending them maps to the order on reception. (For message passing as considered
here, only FIFO semantics seem useful.)

But the first problem to solve is to ensure that the actions of these threads do not interfere with each
other and data can still be transferred between the two thread-specific storage areas. In most cases the
operating system will offer such functionality (inter-process communication), but sometimes we have to
deal with threads running on separate processors which are not under the control of the same operating
system instance, are not connected by a full-blown communication network, but are still tightly connected
by hardware.

In these cases one sometimes uses “dual-port memory”, i.e., RAM chips which can be read and written from
two different sides. Often, such chips also offer additional hardware support (e.g., a hardware semaphore)
which can be used to design algorithms for consistent access to data structures in the RAM part of the
chip [1].

A similar situation arises if one uses shared memory provided by a common operating system instance,
except that additional support for coordination between the two sides is typically offered by system calls.

In both cases we now have a common area of memory which we can use. Obviously, we have to divide the
area into a number of buffers, have one side put its next message into the “next free” buffer, and let the
other side fetch it. The interesting problems are how to use the storage area efficiently and how to keep the
two threads using it from interfering with each other without introducing unnecessary coupling. This article
proposes a model for doing that.

2 The Basics

2.1 Fundamental Building Blocks and Their Properties

A flexible ring buffer (FRB) is assumed to have two interfaces or “sides”, a read interface and a write
interface. Through these interfaces the following three memory areas are visible (see figure 1):

• a buffer area

• a write offset area for publishing a write offset (next position to write to)

• a read offset area for publishing a read offset (next position to read from)

The write interface must permit the following operations:

• writing to the buffer area,

• writing the write offset, and

• reading the read offset.

Similarly, the read interface must permit:

• reading from the buffer area,

• reading the write offset, and

• writing the read offset.

Read and write operations are assumed to be serialized on each side separately, but it is also assumed that
operations on different interfaces do not interact to a certain extent:

• Access operations involving different areas (buffer area, write offset area, read offset area) are inde-
pendent.

Message Passing Between Loosely-Coupled Threads by Means of Flexible Ring Buffers 3

�����
�����
�����
�����

�����
�����
�����
�����

read interface

write interface

buffer area

write offset

read offset

write offset

area

read offset

area

Figure 1: Building blocks of a flexible ring buffer

• Writing an offset is atomic, i.e., while a write operation is in progress from one of the interfaces, a
sequence of read operations on the offset from the other interface will start yielding the old value and
then switch to the new without jumping back or giving other values.

• The buffer area consists of a sequence of independency units (IUs) and has the property that any
two access operations from different sides will not interfere with each other if the two storage areas,
extended to the boundaries of independency units, do not overlap.

It should be noted that these properties need not be realized in the memory area implementations but may
be shifted into the access operations (which would then need additional functionality not mentioned above).
If, for example, a memory area has the property that the other side may not read while a write operation
is in progress (perhaps the chip has sufficient power only for one of the operations), this can be solved by
the writing side first establishing a state where reading will block or fail, then performing the writing, and
finally permitting reading again. This, however, introduces a certain amount of coupling between the two
threads involved and is inefficient because one thread has to wait for the other to finish; it is preferable to
limit the necessity for such a situation. The good news, however, is that in particular the condition on the
buffer area (independency for non-overlapping operations) can be satisfied by off-the-shelf hardware.

The condition imposed on the offset variables (atomic operations) seems to be somewhat trickier to satisfy
at the hardware level. This is a point where hardware semaphore support becomes useful or even necessary.
In such cases the offset areas are often located in the same memory region as the buffer area and occupy a
number of dedicated IUs. Access operations on the offsets must then be protected by obtaining a semaphore
first, unless each area takes up at most a region for which the hardware supports atomicity (some off-the-shelf
hardware components do). Using semaphores for offset area protection is less problematic than in the case
of the buffer area because the data size involved is constant and the duration of the interval the variable is
blocked is therefore easier to control.

In designing access algorithms for an FRB one should keep in mind that reading or writing such inter-thread
memory areas is often slower than operating on thread-specific storage. Accessing the FRB should therefore
be limited to absolutely necessary operations.

2.2 Principles of Operation

Using an FRB is fairly simple in principle.

The writing side keeps the authoritative value for the write offset in thread-specific storage. The first step
is then to read the other side’s published read offset and to determine, from the distance between the two,
the amount of free storage available. If that is sufficient, the writer stores its data into the buffer area at a
position beginning at the current value of the write offset, after writing a length field, increments the local
write offset by the amount of storage used, and finally writes the new value to the write offset area. If the
end of the buffer area is reached, the remaining data are added in front.

The reading side first determines the distance from the read offset (kept locally) to the published write offset.
If it is non-zero, the FRB contains data. The reader fetches the length field from the position indicated by
the current read offset and then the following data; finally, it increases the read offset (local and published
values) to point behind the data read.

Version 1.8

4 Message Passing Between Loosely-Coupled Threads by Means of Flexible Ring Buffers

Note that this method imposes an integrity condition on the FRB as a whole: the state of an FRB is only
valid if, starting at the read offset and going through the length fields stored in the buffer area, we end up
exactly at the write offset without bypassing it.

3 Initialization

3.1 Prerequisite Knowledge

An FRB can only be used if certain information is known to each of the two threads involved before they
come into contact:

• What the rôle of this thread is, reader or writer.

• Everything needed in order to access the read or write interface, respectively, including the address
and size of the memory areas and whatever is needed in order to satisfy the requirements described in
section 2.1 (this includes the IU size).

• Certain conventions on how data are encoded which will be described later.

3.2 Initial State

The initial state of an FRB is often indeterminate because the hardware cannot guarantee particular initial
values for storage areas and, even if it does, these values are not guaranteed to be suitable for an FRB. This
means that the integrity condition described in section 2.2 is in general initially violated and this must be
corrected. And even if the integrity condition holds initially, the resulting messages are fictitious or out of
date and should be discarded.

Initialization of an FRB therefore requires configuring it not to contain any data by setting both offset areas
as well as the underlying variables to the same value (preferably zero) before any of the two sides may
proceed to using the FRB as intended for normal operations. However, the writer may not set its offset to
an arbitrary value like zero if the reader is still operating on the FRB (perhaps the writer was restarted),
and the reader may not do it if the writer is still using the FRB (in case the reader was restarted). This
leaves us with two possibilities:

• Both sides more or less accept any values they find and try to work with them.

• Both sides synchronize initially before they are permitted to proceed independently.

The first variant requires the writer to have the ability to read its own published offset and must include
rules for deriving valid values from invalid ones in both offset areas. Initialization then simply consists in
both sides reading the write offset area and setting their underlying variable to the (possibly corrected) value
found there; any corruption discovered by the reader in the buffer area at a later time is simply handled by
reinitializing the reader. This variant is simple to implement but has the disadvantage that the writer does
not obtain information on whether the reader discarded any messages; it can be considered a connection-less
method of communication. In contrast, the second variant initially establishes a connection between the two
sides; if the reader has any trouble, terminating the connection will make this visible to the writer. As the
first variant does not seem to pose any interesting problems, the second is the one mainly considered in this
article.

Under special circumstances, a synchronization may be trivial. For example, if one side of the FRB may
stop the other and if this dominant side can write all memory areas, the dominant side may simply initialize
the FRB while the other side is incapable of interfering. However, such a method introduces a really strong
coupling between the two threads and is therefore not acceptable as a general procedure.

A better solution is to use the two offset areas for exchanging messages initially. At least some of the values
chosen for this purpose must then, of course, be recognizable as being special, i.e., they must not be possible
offset values. Such values are likely to be available for a number of reasons1.

1Offset areas can represent values in the range 0 to 2n − 1 for some integer number of bits n. The critical situation is then
that of the buffer area having a “size” of 2n. The main reason for some special offset values being free is now that the offset
areas are often part of the RAM chip also hosting the buffer area; this makes it likely that the entire RAM size is actually
2n and hence the length of the buffer area will be a bit less than 2n. (And if it isn’t, we can always refrain from using a few
bytes at the upper end.) We will also see later that offsets are multiples of IU chunks, hence in case of multi-byte IUs we have
additional byte offset values to play with, or we may choose to count offsets in larger chunks.

Message Passing Between Loosely-Coupled Threads by Means of Flexible Ring Buffers 5

In general, each of the two threads which may use a connection-oriented FRB goes through three phases:

• Not using the FRB

• Initializing

• Normal operations

The initial state for a side is one where it isn’t using the FRB; it then requests the other side to participate
in an initialization. The side requesting this must then wait for the other side’s consent. After that has been
obtained, the requesting side may set its offset to zero; this also tells the other side that this side has finished
initialization. In the end we should reach a state where both offsets are zero, the reader is waiting for the
writer to insert data into the buffer, and the writer has permission to write. Because the writer has the
initiative during normal operations, obtaining that permission is obviously the last step to achieve. Going
backwards in time, we can construct the following list of final states:

• Normal operation with an empty buffer: both offsets are zero, the reader expects the writer to insert
data into the buffer, and the writer has permission to do that.

• Waiting for reader initialization: the read offset has a special value, the write offset is already zero,
and the writer waits for the reader to set its offset to zero.

• Waiting for writer initialization: both offsets have special values and the reader waits for the writer to
set its offset to zero.

This means the following sequence of events, now going forwards in time:

1. The reader finds a special value in the write offset area and writes the special value START INIT to
the read offset area.

2. The writer finds START INIT in the read offset area and writes zero to the write offset area.

3. The reader finds zero in the write offset area, writes zero to the read offset area, and starts normal
operation.

4. The writer finds zero in the read offset area and starts normal operation.

This sequence of steps obviously achieves the desired initialization, so the remaining question is how we can
reach the state needed to start it without causing an inconsistency.

For the following discussion, let’s assume that the values in the offset areas have been set deliberately and
following the rules above, except that terminating the execution of the steps at an arbitrary point (e.g.,
because of a crash) is permitted (though undesirable) behaviour for a thread. In contrast, random initial
values will be discussed in section 3.6.

As the final decision to start initialization is the reader’s, the primary problem is how the reader can decide
that the writer is not in a state which could lead to an inconsistency. The situation to be avoided is that the
writer interprets the zero value about to be written into the read offset as a value occurring while operating
normally and not as part of the initialization. Hence the reader must be satisfied that the writer is not in the
state of normal operations and will not enter it before the reader sets the read offset to zero. The former is
simple to diagnose: if the write offset area shows a special value, the writer can’t be in the normal state. The
latter looks trickier but it’s actually not: if the write offset is a special value, the writer cannot have finished
step 2 above. In the worst case (e.g., previous reader incarnation crashed during initialization and we have
a very slow writer), the writer will now complete that step and then wait before step 4 for the read offset
to become zero. Hence the initial condition that the write offset must have a special value ensures that the
writer will not enter the phase of normal operations until the FRB is in a consistent state, even if execution
of the steps overlaps partially.

Consider now the situation of the writer. Obviously, its first action must be to write a special value (I’ll
call it NOT IN NORMAL STATE) to the write offset area. It then must examine the read offset area and
wait for it to contain START INIT. As soon as it finds that value, it can execute step 2 and continue. Note
that START INIT implies that the reader is not in the normal operating state and cannot yet have finished
step 3. In the worst case the reader will now do that while the writer executes step 2. This leads to two
possible outcomes: if the reader examines the write offset after the writer has set it to zero or already to
some larger valid offset, the initialization will have been successful; if it examines the write offset while it still
holds NOT IN NORMAL STATE, the reader must leave the state of normal operations it has just entered
and start a new attempt at initialization.

Obviously, both sides must agree on the encoding of offset values. This includes the bit order but also a
suitable rule for recognizing the special values START INIT and NOT IN NORMAL STATE. If n is the

Version 1.8

6 Message Passing Between Loosely-Coupled Threads by Means of Flexible Ring Buffers

number of bits in the two offset areas, one possibility is to choose NOT IN NORMAL STATE = 2n − 1
and START INIT = 2n − 2.

3.3 Procedure for the Writer

Not using the FRB

Wait for START_INIT

Wait for zero

Normal operation

/write NOT_IN_NORMAL_STATE

START_INIT / write zero

zero

neither START_INIT nor zero /

write NOT_IN_NORMAL_STATE

invalid offset /

write NOT_IN_NORMAL_STATE

Figure 2: State transitions for the writer of a connection-oriented FRB

Figure 2 shows the initialization procedure from the point of view of the writer of a connection-oriented
FRB:

1. Write NOT IN NORMAL STATE to the write offset area.

2. Read the read offset area until it holds the value START INIT.

3. Write zero to the write offset area.

4. Wait for the read offset area to contain zero. If it switches to another value, go back to step 1.

5. Start normal operations.

If during normal operations the read offset becomes invalid as a buffer offset (this includes the two special
values), go back to step 1.

The writer should also execute step 1 if it stops using the FRB for whatever reason. This includes the case
that the writer deliberately aborts the initialization which is always permitted (e.g., because of a timeout
while waiting for the reader).

3.4 Procedure for the Reader

For the reader of a connection-oriented FRB, initialization consists of (see figure 3):

1. Write NOT IN NORMAL STATE to the read offset area.

2. Wait for the write offset area to contain NOT IN NORMAL STATE.

3. Write START INIT to the read offset area.

4. Wait for the write offset area to contain zero. If it switches to another value, go back to step 1.2

5. Write zero to the read offset area.

6. Start normal operations.

2Actually, the reader might continue waiting, but this seems more robust for purely paranoid reasons.

Message Passing Between Loosely-Coupled Threads by Means of Flexible Ring Buffers 7

Not using the FRB

Wait for zero

Normal operation

Wait for

NOT_IN_NORMAL_STATE

/write NOT_IN_NORMAL_STATE

zero / write zero

neither NOT_IN_NORMAL_STATE nor zero

/ write NOT_IN_NORMAL_STATE

invalid offset /

write NOT_IN_NORMAL_STATE

NOT_IN_NORMAL_STATE /

write START_INIT

Figure 3: State transitions for the reader of a connection-oriented FRB

If during normal operations the write offset becomes invalid as a buffer offset (this includes NOT IN NOR-
MAL STATE), go back to step 1.

The reader should also execute step 1 if it stops using the FRB for whatever reason. This includes the case
that the reader deliberately aborts the initialization (e.g., because of a timeout while waiting for the writer).

3.5 Assertions

In my experience, considering usage scenarios for a connection-oriented FRB can be very confusing because
possibilities seem to multiply fairly quickly because of concurrency issues. The following assertions helped
me in controlling these branches. They are concerned with what can be deduced about the other side’s state
from that other side’s offset value and one’s own state. The proofs for these statements are based on a
number of assumptions:

• The initial memory content is undefined.

• There are no hardware failures. In particular, memory is stable, i.e., stored values change only when
someone writes to the storage cell.

• Only reader and writer modify the memory areas.

• Reader and writer follow the rules in sections 3.3 and 3.4.

• Reader and writer may, however, crash. This is considered to be a transition to the state “Not using
the FRB” without modifying the side’s own offset.

• The fundamental operations (reading, writing, transitioning, crashing) are atomic.

• If an offset-modifying operation should be followed by a state transition, either that transition or a
crash follows the operation immediately.

Assertion 1 If the other side’s offset area contains a value which is valid as a buffer area offset, that side
has either not set it at all (i.e., the value is meaningless) or, immediately after it wrote the value, it either
crashed (leading to “Not using the FRB”) or was in one of the states “Normal operation” or “Wait for zero”
(the latter only in case of the writer).

Proof: The first possibility is obvious, hence let’s assume that the offset has been set deliberately. Looking
at the transition diagrams for sections 3.3 and 3.4 we see that the other half of the statement follows. —

Version 1.8

8 Message Passing Between Loosely-Coupled Threads by Means of Flexible Ring Buffers

Assertion 2 If the other side’s offset area contains a value which is not valid as a buffer area offset (this
includes the special values), that side has either not set it at all (i.e., the value is meaningless) or the other
side was not in the state “Normal operation” after it wrote the value.

Proof: Again, the first half is obvious, hence let’s assume that the value has been set deliberately. Disregarding
crashes for the moment, consider first the situation of the writer: if it wrote an invalid offset value (which
can only have been NOT IN NORMAL STATE), the subsequent state was either “Not using the FRB”
or “Wait for START INIT”. The conclusion is similar in case of the reader: it must have written either
NOT IN NORMAL STATE or START INIT and must then have been in one of the three states which
are not “Normal operation”. Finally and for both sides, if a crash occurred immediately after writing, the
thread was then in “Not using the FRB”. —

Assertion 3 If a side sees an offset value of zero when in the state “Wait for zero”, the other side has set
this value deliberately, i.e., the value isn’t random. All subsequent values are then also non-random.

Proof: Each side first waits for a special value (START INIT or NOT IN NORMAL STATE, respectively)
and then for zero. Because one of the assumptions above is that memory does change only through writing,
a value of zero after having seen another value implies that zero was written deliberately. This applies then
to all following values as well. —

Assertion 4 If the writer is in the state “Normal operation”, the reader is not in “Wait for zero” (i.e.,
either in “Normal operation”, “Not using the FRB”, or “Wait for NOT IN NORMAL STATE”).

Proof: A writer can have reached “Normal operation” only by coming from “Wait for zero”, hence it saw
the reader deliberately setting the read offset to zero (assertion 3). At that time, the reader must have
left its “Wait for zero” to either enter “Normal operation” or to crash (leading to “Not using the FRB”).
Because the write offset has been non-special since before that transition (when the offset was zero), the
reader cannot since then have found the value NOT IN NORMAL STATE in the write offset which would
have been necessary in order to enter “Wait for zero”. —

The converse of assertion 4 (if the reader is in “Wait for zero”, the writer is not in “Normal operation”) is
the statement derived in section 3.2 to show that the reader may set its offset to zero without causing an
inconsistency.

3.6 Random Initial Values

After power on, the offset areas are in an undefined state. Because both, reader and writer, wait for partic-
ular special values initially (NOT IN NORMAL STATE and START INIT, respectively), this cannot be
a problem unless the initial values randomly happen to be the expected ones. Even in that case, however,
no problems arise which we have not already considered because both sides have to wait for a switch to a
particular other value (zero) and that will not happen randomly unless there is a hardware error. Therefore
this situation is not different from finding values from a previous initialization where the other side has
crashed before completing it.

3.7 Permanently Failing Initialization

We have already seen during the derivation of the preceding rules that the two sides will not reach states
where they interpret the other side’s offset area incorrectly. But will they always reach the state of normal
operations or is it possible that initialization fails permanently or at least repeatedly?

The rules for transition between states normally guarantee that each side progresses linearly from “Not using
the FRB” to “Normal operation”. However, for both sides there is a branch in “Wait for zero” which takes
that side back to its initial state. These branches are therefore candidate causes for a permanent failure.

Let’s first try to exploit the writer’s branch, i.e., consider step 4 in section 3.3. In order for that exit to be
taken, the read offset must change from START INIT to another value which is not zero. According to the
rules the only permissible value for that is NOT IN NORMAL STATE, and that can only happen if the
reader crashed or abandoned the initialization. Hence the scenario unfolds as follows:

Message Passing Between Loosely-Coupled Threads by Means of Flexible Ring Buffers 9

• Reader and writer somehow both write NOT IN NORMAL STATE. The writer then waits for
START INIT.

• The reader finds NOT IN NORMAL STATE, writes START INIT and crashes.

• The writer finds START INIT, writes zero, and now waits for zero. (This is the true starting point for
this scenario; the preceding description is merely illustrative.)

• The reader starts again, writes NOT IN NORMAL STATE and waits for NOT IN NORMAL -
STATE. Note that from this point on the two sides have synchronized, hence we don’t have to consider
overlapping actions.

• The writer finds NOT IN NORMAL STATE, aborts the initialization, writes NOT IN NORMAL -
STATE, and now waits for START INIT.

• The reader finds NOT IN NORMAL STATE and the initialization continues as desired.

Hence, if the writer’s abortive branch is taken, the next attempt will be successful (unless there is another
crash, of course).

Now consider the case of the reader aborting the initialization. This happens if the write offset switches
from NOT IN NORMAL STATE to a value other than zero. However, according to the rules, zero is the
only permissible next value for the write offset, even if the writer crashes. Hence this branch should actually
never be taken unless there is a software or hardware failure.

Therefore the two sides will always reach the state of normal operation. However, that is not quite good
enough to conclude that an effectively permanent failure is impossible: there are two other paths which take
each side back to square one, namely the exits caused by invalid buffer offsets in the state of normal operation.
Therefore it is in principle possible that there do exist scenarios in which both sides reach the desired normal
state, only for at least one of them to leave it immediately. (The attentive reader will remember that I’ve
discussed such a possibility already in section 3.2.)

I’ll first consider the case of the writer leaving the state of normal operations. Because it has reached this
state, it found zero in the read offset. Therefore the reader — unless it crashed — had also reached the state
of normal operations and the only rule-conforming way causing the writer to go back to its initial state is if
the reader takes its exit branch. We therefore only have to consider the latter case.

Let’s assume therefore that the reader has found a value in the write offset area which is invalid as an
offset. Because the reader is in the state of normal operation, it must have found a valid value (including
zero) before. Hence the writer must have been in one of the states “Wait for zero” or “Normal operation”.
Apart from a crash, it can only have left them by writing NOT IN NORMAL STATE and can now at most
have entered “Wait for START INIT”, waiting for the reader. If the reader now reacts by restarting the
initialization, further actions on both sides will progress as intended.

Therefore, unless at least one of the participants crashes repeatedly, there will be no permanent failure.

3.8 Application Beyond FRBs

Note that the rules in the preceding sections do not use the FRB’s buffer area. Therefore the handshake
algorithm proposed here can also be used in situations where the values in the offset areas have another
meaning than that of offsets in a buffer area.

For example, if the two sides merely wish to exchange numerical values of fixed length, the two offset areas
are already sufficient for that. In that case, one should probably modify the writer’s rule for leaving “Wait
for zero” to any non-special value being acceptable.

4 Normal Operation

4.1 Buffer Area Content

Logically, digital memory is a sequence of bits. For the purpose of storing a number in memory, we have
to indicate the starting bit, the number of bits, and the bit order within the resulting bit field. However,
commonly available hardware divides memory into units having a fixed number of bits (typically multiples
of 8 bits) and prefers to operate on these units. At the abstraction level provided by programming languages
this is usually broken down again to units of bytes (nowadays almost always consisting of 8 bits each),
we are able to address individual bytes, and each byte is already represented as a number making its bit

Version 1.8

10 Message Passing Between Loosely-Coupled Threads by Means of Flexible Ring Buffers

order irrelevant to the programmer. The three parts of information needed for identifying a number in a bit
sequence therefore transform into byte address, number of bytes, and the byte order. I’m going to follow this
terminology in the subsequent sections, but readers should keep in mind that this is merely a convention
and does not imply any restriction on hardware properties.

4.1.1 Length Field

The basic idea for storing messages in the buffer area is to store a length field first, indicating the size of the
message, followed by the actual message. Obviously, both sides must agree on the encoding for the length
field, i.e.:

• size (number of bytes used)

• byte order (numerical weight of each byte in the field)

• unit used for counting

• whether the length includes the length field or not

Actually, this list is already more specific than logically necessary: if buffer space is really scarce and we
mainly expect short messages, we might prefer to use a length field of variable size. Note, however, that the
size of the entire buffer area is fixed in advance, hence we don’t have to consider arbitrarily large messages,
and it’s also unlikely that memory dedicated to data interchange between just two threads has a large size to
begin with. Independent of available memory, there might also be an application-level upper bound on the
length of individual messages to be stored. All this makes it likely that the question of whether a variable-
length encoding is worth implementing boils down to using either 1 or 2 bytes to encode a length — hardly
a substantial saving of buffer space. Therefore I’m not going to discuss this possibility further.

Concerning the unit used for counting it might seem obvious that the length field should identify the number
of bytes in the message. However, apart from the possibility that we might want to store only messages with
lengths which are integer multiples of more than 1 byte (where we could still denote the length in bytes),
there is also the situation where messages to be stored have lengths measured in arbitrary numbers of bits.
Therefore the unit to be used for counting message length should be agreed upon explicitly.

Whether the value in the length field includes the field’s length and its padding as well as the length of the
message is mostly a matter of convention. However, only the convention of not including the length field in
the count works in all possible cases (consider the case where the field’s length is not an integer multiple of
the unit used for counting the length of the message), hence that should be the preferred convention.

4.1.2 Padding Conventions

The buffer area is divided into a part reserved for access by the writer (free buffer space) and a part reserved
for the reader (message entries). The values in the offset areas determine which of the two sides has the right
to access a particular region of storage. In order to avoid access conflicts, the two parts must each consist of
an integer number of independency units (IUs; see section 2.1). From this it follows that every single message
entry (length field followed by the message itself) must also consist of an integer number of IUs. This implies
that every entry must start on an IU boundary and must be padded to the end of the last IU.

In addition and depending on the properties of the two bus systems used by reader and writer to access the
FRB, it may be advantageous to align length field or user data on a particular byte boundary. This implies
that there may be padding at the beginning of an entry or between the length field and the data. If we
assume that the alignment requirements translate to the distance from the start of the buffer area to be an
integer multiple of an alignment size, clearly the first entry does not need initial padding. As every entry
should have the same layout, all entries should then also start at a multiple of the alignment size.

These two requirements lead us to the definition of the buffer area chunk size as the least common multiple
of IU size and alignment size. Every entry must then start at an integer multiple of the buffer area chunk
size (hence all non-special offset values must be multiples of that size) and no initial padding will be needed.
Padding between length field and user data is then determined by the alignment size. If one simply uses the
buffer area chunk size for this purpose as well, the FRB implementation does not even need to know about
IU size or alignment size.

It will also simplify buffer wrapping if the buffer area chunk size is larger than or equal to the size of the
length field.

Message Passing Between Loosely-Coupled Threads by Means of Flexible Ring Buffers 11

4.2 Writing

Whenever the writer of a connection-oriented FRB wishes to insert a message of length n into the FRB, the
following rules must be adhered to (in the state “Normal operation”):

1. If the message is too large to be inserted independent of the current fill state of the FRB, writing is
refused.

2. Read the read offset. If it is not a valid buffer offset, write NOT IN NORMAL STATE to the write
offset area, switch to “Not using the FRB”, and possibly reenter the phase of initialization.

3. Determine the amount of free space in the FRB:

free = (buffer size − write offset + read offset) mod buffer size

If it is zero, add buffer size. Then determine the amount of space needed,

needed = size of length field + n + padding,

round it up to the next integer multiple of the buffer area chunk size, and compare: if needed ≥ free3,
writing is presently not possible and processing stops here.

4. Write the length field and the message itself. If the end of the buffer area is reached, add the remaining
data in front.

5. Increase the write offset by the rounded-up value of “needed” (modulo buffer size) and write it to the
write offset area.

It is not necessary for the writer to regularly inspect the read offset area if no message is to be written: even
if the reader wishes to reinitialize the FRB, as long as no messages are available nothing is lost.

4.3 Reading

Whenever the reader of a connection-oriented FRB wishes to check for a message and possibly extract it
from the FRB while in the state “Normal operation”, it must proceed as follows:

1. Read the value from the write offset area. If it is not a valid buffer offset, write NOT IN NORMAL -
STATE to the read offset area, switch to “Not using the FRB”, and possibly reenter the phase of
initialization.

2. Determine
used = (write offset − read offset) mod buffer size,

the amount of storage currently used by message entries. If it is zero, there is no message and processing
stops. Otherwise, subtract the size of the length field and any padding between length field and message;
call the result m. If “used” is not an integer multiple of the buffer area chunk size or m is negative, we
have a protocol error: write NOT IN NORMAL STATE to the read offset area, switch to “Not using
the FRB”, and possibly reenter the phase of initialization.

3. Read the length field, starting at the current value of the read offset. If length field values include
length field size or padding, subtract these values. Lets call the result n. If n < 0 or n > m, we have
another protocol error: write NOT IN NORMAL STATE to the read offset area, switch to “Not using
the FRB”, and possibly reenter the phase of initialization.

4. Read a message of length n from the buffer entry, continuing at the beginning of the buffer area if the
end is reached.

5. Increase the read offset by
size of length field + n + padding

(modulo buffer size) and write it to the read offset area.

In order to prevent unnecessary polling and to improve latency, some method of letting the writer signal the
reader about a message having been added to a previously empty FRB can be useful.

3Yes, ≥ and not >: we can’t use the full buffer because the two offset values alone are not sufficient to distinguish between
completely empty and completely full (the two offsets are equal in both cases). The usable size of the buffer area is therefore
buffer size − buffer area chunk size.

Version 1.8

12 Message Passing Between Loosely-Coupled Threads by Means of Flexible Ring Buffers

Appendix

References

[1] Michael J. Miller. Dual-Port SRAMs With Semaphore Arbitration. Integrated Device Technology, Inc.,
San Jose (California, USA), March 1999. Application Note AN-14.
URL http://www.idt.com/document/14-dual-port-w-semaphore-arbitration

Abbreviations

FIFO First in, first out
FRB Flexible ring buffer
IU Independency unit
RAM Random-access memory

Copyright and License

c© Martin Lottermoser 2013–2014. All rights reserved.

Address:

Martin Lottermoser
Greifswaldstrasse 28
38124 Braunschweig
Germany

This article may be used under the terms of the Creative Commons License “Attribution-NoDerivatives 4.0
International” (CC BY-ND 4.0):

http://creativecommons.org/licenses/by-nd/4.0/

The term “derivative work” or “adaptation” is meant to apply only to modifications of this article, not to
using the ideas described here. Do the latter at your own risk.

History

Version 1.6: published 2013-05-10 on my web site.

Version 1.8 (2014-06-12): introduced the connection-less variant in section 3.2 and reworded subsequent
sections with respect to this distinction, replaced the expression “message chunk size” with “buffer area
chunk size” and redefined it as the least common multiple of IU size and alignment size, changed the license
from CC BY-ND 3.0 to CC BY-ND 4.0.

http://www.idt.com/document/14-dual-port-w-semaphore-arbitration
http://creativecommons.org/licenses/by-nd/4.0/

	Message Passing Through Shared Memory
	The Basics
	Fundamental Building Blocks and Their Properties
	Principles of Operation

	Initialization
	Prerequisite Knowledge
	Initial State
	Procedure for the Writer
	Procedure for the Reader
	Assertions
	Random Initial Values
	Permanently Failing Initialization
	Application Beyond FRBs

	Normal Operation
	Buffer Area Content
	Length Field
	Padding Conventions

	Writing
	Reading

	Appendix

