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Abstract

Existing post-Newtonian approximation methods in general relativity lack a sound
mathematical foundation. This paper takes the view of a space-like initial value
problem and examines the constraint equations. It is proven that in suitable classes
of function spaces and close to Newtonian values an iteration method can be devised
which for every set of free data produces a sequence of approximations converging to
a unique solution of the constraint equations. It is possible to obtain an upper limit
on the difference between each step in the approximation and the unknown solution.
In addition, one finds that for a matter tensor which is Ck in the metric and the
matter variables the map from free initial data to solutions of the constraints is also
Ck, where k is a positive integer, ∞, or ω. This provides a basis for approximation
methods using Taylor expansions.

Résumé

Les méthodes, actuellement existantes, d’approximations post-newtoniennes à la
relativité générale manquent d’une solide fondation mathématique. Le présent
travail est une première étape dans cette direction. Il prend le point de vue du
problème de Cauchy et examine les équations de contraintes. On prouve qu’il
est possible de définir, dans des classes de fonctions appropriées, et au voisinage
de données newtoniennes, une méthode d’itération qui associe à chaque ensemble
de données libres une suite d’approximations convergeant vers une solution des
contraintes. On peut aussi obtenir une borne sur l’écart entre la solution exacte
et chaque étape de la suite d’approximations. De plus, si le tenseur d’énergie-
impulsion est une fonctionelle de classe Ck de la métrique et des variables de
matière, on trouve que l’application des données libres sur les solutions des con-
traintes est aussi de classe Ck, ou k est un entier naturel, ∞ ou ω. Ca produit une
base pour des méthodes d’approximation utilisant des expansions de Taylor.
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1. Introduction
As can be expected for every realistic theory, the theory of general relativity has the drawback
that explicit solutions for physically interesting situations are almost impossible to find. Thus
one is forced to employ approximation methods.

Generally speaking, an approximation scheme should consist of three parts:
(A1) A statement of the equation to be solved and a characterization of those solutions for

which approximations are to be generated (domain of definition).
(A2) A rule by which one can generate the approximation to any of the solutions selected

in (A1) (algorithm).
(A3) A statement describing in which sense the expression “approximation” is to be under-

stood, i.e., what the relation is between the approximation and the solution (accuracy
limit).

Note that the rule (A2) requires as input a specification of the solution one is looking for. As
this “specification” will not usually take the form of an explicit statement of the solution, a
prerequisite of an approximation scheme is the existence of a bijective map between a set of
specifications (“data”) and the set of solutions to be approximated.

Usually, one prefers schemes in which (A2) provides a method for generating an infinite sequence
of approximations, and where an error limit in (A3) can be made arbitrarily small by choosing an
approximation of sufficiently high “order” (index in the sequence). This means that the sequence
of approximations converges to the solution (a rule for computing the error will usually define a
topology). Of course it is not necessary for a method to produce a convergent sequence. In fact,
ultimately divergent methods might give better results in the first few orders than convergent
ones. Nevertheless, and although most of the ensuing remarks apply also to non-convergent
methods, I shall for reasons of simplicity restrict myself to the convergent case. There, the order
needed to attain a specified accuracy as a rule depends on how close the first approximation (0th
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order) is to the solution. One would therefore expect that for a good approximation method the
set of 0th-order approximations has to be sufficiently dense in the set of functions where one is
looking for solutions.

The observation of objects under the influence of gravity shows that for a large and important
set of phenomena (such as the movement of planets in the solar system) the Newtonian theory
of gravitation yields mathematical models which are in good or even excellent agreement with
observations. If we assume that general relativity describes these phenomena correctly (or at
least better than the Newtonian theory), we can deduce that for a certain kind of N -body system
Newtonian solutions are very close to relativistic ones, where “close” is defined in terms of the
experimental information accessible to us. This suggests that in these cases an approximation
method starting with Newtonian solutions might exhibit a good rate of convergence. That is
the motivation for the post-Newtonian approximation schemes in general relativity.

But what exactly is a post-Newtonian approximation? Apparently, the first procedure to be
given this name was developed by S. Chandrasekhar [1] based on earlier work by others, in
particular by Einstein, Infeld, and Hoffmann [2]. He started with a family of solutions of general
relativity parametrized by 1/c (c being the velocity of light), assumed a particular form of the
family of metrics in some coordinate system, and proceeded to do an expansion of everything in
powers of 1/c around Minkowski space. The name “post-Newtonian” presumably arose because
his first-order equations describe Newtonian solutions. I shall summarize the steps necessary for
this procedure as follows:

(N1) Consider families of solutions of Einstein’s equations, depending on a positive real pa-
rameter ε.

(N2) Select a set of variables describing a solution completely, and choose for each variable
the leading power in ε. Now introduce new variables from which these powers are taken
out.

(N3) Express the equations in terms of the new variables and rearrange them such that putting
ε = 0 in the equations is possible and leads to Newtonian equations. For simplicity, I
shall call the resulting set of equations the ε-equations. They have to be considered as
functions of ε and the new variables.

(N4) Specify an approximation method for a solution of general relativity (situated at ε = ε1,
say) considered as a solution of the ε-equations. (Taking the rescaled variables to have
the same meaning as the original ones we are led to ε1 = 1.)

Several remarks are necessary here.
— The motivation behind step (N2) is that one expects Newtonian theory to be a good ap-

proximation to general relativity if certain expressions are “small”, e.g., the gravitational
potential, the matter velocities, and the ratio of temporal and spatial changes. One then
selects the leading powers in ε such that they reflect the relative size of these expressions in
those cases one is interested in. The mathematical requirement that the powers are chosen
such that we end up with Newtonian equations for ε = 0 is not sufficient to fix these powers
uniquely, even if we demand that at ε = 0 we shall obtain the full set of Newtonian equa-
tions with every Newtonian variable present. The reason is that general relativity allows its
solutions more degrees of freedom than the Newtonian theory of gravitation (i.e., one has to
specify more functions to identify a solution), and the only property required from the addi-
tional variables is that expressions describing the resulting new phenomena (gravitomagnetic
effects and gravitational radiation) must have a positive power of ε in front.
As a rule one selects in this step an ε-dependent (flat) background metric and a vector
field which is timelike and vorticity-free with respect to this background. They are used
to distinguish between time and space coordinates, and hence it becomes possible to select
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different ε-powers for temporal and spatial components of tensors. Usually, one also adapts
one’s coordinates to this fictitious observer and metric. (Actually, people as a rule first
choose their coordinates and then define the reference metric by specifying its components
in that system in such a way that there is an orthogonal split between one timelike and three
spacelike coordinates. The two methods are locally equivalent.)

— One important point in step (N3) is that transformations of the equations which are equiv-
alent for ε > 0 might lead to different equations if one puts ε = 0. For example, consider
a linear transformation for which the determinant vanishes at ε = 0 (take an equation and
multiply it by ε). This doesn’t change anything if ε is positive, but has rather drastic conse-
quences for the limit. This is another point where different choices are possible, and therefore
an explicit statement of the equations as functions of ε is essential.
The condition that ε = 0 should lead to Newtonian equations seems to exclude Chan-
drasekhar’s method, because there Newtonian equations arise in the first-order perturbation
around Minkowski space. But Minkowski space is a solution of general relativity, and there-
fore the O(ε0) equations are identically satisfied. Dividing by appropriate powers of ε—which
is an equivalent transformation only for non-zero ε—the resulting ε-equations become New-
tonian relations at the level ε0.
It is important to realize that after step (N3) ε has changed its meaning: it is no longer
parametrizing solutions of general relativity but has become part of the collection of ob-
jects specifying a solution of the ε-equations. A family of solutions will depend on a new
parameter ε′, and it will contain a function ε(ε′). Usually one considers only families with
ε = ε′.

— The time-honoured method of approximation is to consider a family S(ε) of solutions of
the ε-equations, starting with a known Newtonian solution S0 = S(0) and ending with the
desired solution S1 = S(ε1) of general relativity. This family is assumed to depend at least
differentiably on ε, in order to enable us to make a Taylor expansion with respect to ε around
ε = 0. If the equations are also differentiable (considered as a function of ε and S), one can
expand both at the same time and derive a sequence of equations to be solved successively
for the expansion coefficients σj of S(ε). The sequence (Ti)i∈N of partial sums,

Ti :=
i∑

j=0

σj ε
j
1,

then represents a sequence of approximations to S1 with the difference being given by a
suitable remainder term from Taylor’s formula. If S(ε) is analytic and ε1 is sufficiently
small, the approximation can be made arbitrarily good.

Of course, there are a number of points here which are unsatisfactory. For example, why should
it be possible to go from a relativistic metric gµν to a Newtonian potential U , which is a totally
different mathematical object? How much freedom is there to produce Newtonian equations,
i.e., how many inequivalent post-Newtonian methods are there? And if ε = 1/c, what does it
mean that c becomes infinite? To understand this and similar questions one needs a theory
encompassing both, general relativity and Newtonian gravity, and using the same type of object
to describe solutions in both theories. The axioms of such a “frame theory” have been stated
by J. Ehlers [3,4] based on earlier work by a number of other authors. These axioms contain a
real parameter λ which for positive values gives an upper bound 1/

√
λ on the relative velocity

of time-like vectors, and hence is to be interpreted as a causality constant. Putting λ = 0 in
the axioms produces a slightly generalized version of Newton’s theory, whereas λ = 1/c2 leads
to the general theory of relativity. However, in this article I shall only use a restricted version
of this theory which adheres to the scheme (N1–N3).
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Taking (N1–N4) as the definition of the term “post-Newtonian approximation method”, it is
now obvious what an author of such a method has to do to satisfy the requirements (A1–A3) at
the beginning.

(1) The ε-equations have to be determined, and sets of functions have to be selected for the
solutions.

(2) For ε = ε1 (when the ε-equations are Einstein’s equations) one has to specify a set
of “data” and prove that a 1-to-1 correspondence exists between these data and the
solutions contained in the set chosen in step (1).

(3) Having selected an approximation method, one then has to prove that it is always
applicable and really gives an approximation in some sense. If one chooses the method
of expansion in ε, one has to prove that given the data for S1 one can select a family S(ε)
of solutions of the ε-equations having a Ck-dependence on ε for a suitable k and satisfying
S(ε1) = S1. Furthermore, one has to point out at least one way in which the sequence
of equations one obtains can be solved for the coefficients σj .

I wish to emphasize that once one has made certain choices (which variables to take, where
to look for solutions, what are the leading powers in ε, etc.) the remaining problem is purely
mathematical and should be stated as such.

Of course, most full-blooded physicists would regard in particular point (3) above not as some-
thing to be proven, and would instead happily assume that such an expansion is always possible.
This procedure has been very useful in physics, and people emphasizing the necessity of proofs
are usually regarded as being hopelessly pedantic. It comes therefore as a pleasant surprise for
the latter that in the business of post-Newtonian approximations this cavalier approach meets
with disaster.

It seems to be a general experience with post-Newtonian methods that an expansion in powers
of ε leads, for sufficiently high index j, to coefficients σj containing divergent integrals. In the
case of the post-Newtonian method of Anderson and Decanio [5] this has for example been
shown by Kerlick [6]. Why does this happen? By matching a post-Newtonian expansion in the
near zone to a post-Minkowskian expansion in the far zone, Anderson et al. [7] and Blanchet
and Damour [8,9] conclude that one has to expand with respect to a more general system of
functions of ε, a system containing in particular ln ε. However, if we look at post-Newtonian
methods by themselves I do not believe that this is the correct answer.

Consider first a statement that a particular system of functions is sufficient for doing expansions.
Such a general statement is almost certainly false, for every such system. The reason is that a
solution of differential equations as a rule contains arbitrary constants, and the field equations
alone can never fix the ε-dependence of these parameters. By choosing a function of ε which
cannot be expanded in that system (and the “almost certainly” above refers to my belief that
for every system such a function exists) one can construct counterexamples. The simplest way
is to use a coordinate transformation involving such a function. This works even in the case
of Minkowski space! Coordinate-independent counterexamples can be obtained by taking any
known solution containing an arbitrary constant of integration with a coordinate-independent
meaning, e.g., total mass.

These remarks show that the field equations alone are not a sufficient basis for the desired
statement. To obtain a family S(ε) of solutions with a particular dependence on ε we have to
restrict in addition those parts of a solution not fixed by the equations. These parts are what
I call “data”. To prove that a particular system of functions of ε is sufficient for expansions
one must first specify which ε-dependent families of data are permitted, second prove that for
every ε the data determine a unique solution S(ε), and finally show that the resulting family S
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of solutions can be expanded with respect to the chosen system of functions of ε. Without
restricting the families of data in this manner a proof is not possible.

But for which system of functions of ε should one try to obtain a proof? Which system is
necessary? This depends on the set of variables we choose to describe a solution, and on the
usefulness of the set of solutions which can be reached by families which can be expanded in
this system. For example, the ε-equations might permit families which do not depend on ε
but which are solutions for all values of ε (the equations and variables to be used later are of
this kind, because they permit the solution Uαβ = 0, Tµν = 0 independent of ε). In this case
one might be tempted to say that the system {ε0} is the only necessary one. But the set of
solutions of general relativity which can be reached in this manner (at ε = ε1) will in general
be insufficient to describe all situations one is interested in. The conclusions to be drawn from
these observations are, first, that every system is permitted provided the resulting set of families
of solutions is non-empty, and second, that the system chosen should be sufficiently flexible to
enable us to bend families of solutions toward all solutions of general relativity we want to reach.
Given any system, for example the set { εn | n ∈ N } of non-negative integer powers of ε, the set
of families of solutions which can be expanded in that system is determined, and the same is
therefore true for the set of families of data generating these solutions. Having selected a basis
for expansions in ε for the solutions, our first task is to characterize the resulting families of
data. The list of properties derived will be complete if we can close the circle and prove that
families of data satisfying these requirements lead to families of solutions which can be expanded
in the system chosen at the outset.

I see only one possibility which could single out particular classes of systems. Depending on
the kind of data chosen, the map from solutions to data will frequently preserve the property
of having an expansion in that system (this is true for the Cauchy problem). This indicates the
possibility that there exists a system of functions of ε which is “closed” under the ε-equations,
in the sense that any family of data which can be expanded in that system leads to a family of
solutions with the same property. Such a system would legitimately be called a “natural” one,
and it would be of interest to find the smallest system of this kind containing the powers of ε.

Most existing post-Newtonian approximation methods ignore the necessity of explicitly fixing
the solutions by specifying data, and I do not know of a single one which proves that a family of
solutions exists and can be expanded, let alone shows what the relation is between approximation
and solution. There is a paper by Futamase and Schutz [10] the title of which (“The post-
Newtonian expansion is asymptotic to general relativity”) and the abstract seem to indicate
that they prove exactly this point (the expression “asymptotic” is used in the sense that there is
a series with a remainder term of order εn). However, they state that they assume in particular
(a) that the initial value problems they consider have solutions, and (b) that the ε-derivatives
of their family S(ε) for ε → 0 “exist unless this assumption leads to contradictions”. As this
together with Taylor’s theorem already completes the proof, their result does not contribute to
a rigorous basis for post-Newtonian approximation methods. There is also a proof by Blanchet
and Damour [8] that in the case of no incoming radiation the set { εn lnm ε | n,m ∈ N } is
sufficient for doing post-Newtonian expansions, but this is based on the assumptions (a) that
the family S(ε) exists, and (b) that it possesses a multipolar post-Minkowskian expansion.

Of course these remarks do not imply that previous versions of post-Newtonian approximations
are useless. But they build on something which is still missing, and as long as we do not have
a firm mathematical foundation for them they have to be treated as unreliable, because we do
not know under which circumstances they give correct answers. That there is a limit to their
validity can clearly be seen in the appearance of divergent integrals. Such a situation is only
possible if the assumptions enabling us to derive these integrals contain a statement which for
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the set of solutions considered is false in general. As long as this statement is not identified,
even the mathematical validity of the lower-order approximations is in doubt.

This doubt is however partially allayed by the fact that there is good agreement between the
lower-order predictions and observations. This shows that although the mathematical deriva-
tions of these methods are questionable, the results are physically acceptable. But because we
have not yet been able to establish a rigorous link between general relativity and these meth-
ods, we have to regard them as logically independent theories, and we do not know what the
agreement between their predictions and the observations tells us about the theory of general
relativity.

It is therefore necessary to establish a rigorous mathematical basis for post-Newtonian approx-
imation methods. This paper is an attempt at a first step in this direction. It uses a Cauchy
problem (space-like initial value problem) to fix the solution, and one result will be that under
suitable circumstances the map from free initial data to solutions of the constraint equations
is analytic. Therefore we know that by choosing a family of data which is analytic in ε we
obtain a family of solutions of the constraints which can be expanded in a convergent power
series in ε. In looking at the mathematical basis of the proof we will in addition realize that
there is another method for generating a sequence of approximations, which is not based on an
expansion of a family of solutions. This method will give a sequence converging to the solution
of the constraints, and we shall see that it is in principle possible (although presumably te-
dious and possibly not very useful) to derive an explicit upper bound on the difference between
approximations and the unknown solution.

2. Mathematical preliminaries

This section contains various general mathematical statements to be used in the remainder of
the paper. They are given without proofs, as these can either be found in the literature or can be
deduced by elementary methods. Physicists among the readers are warned that some familiarity
with calculus on Banach spaces is assumed, but any introductory text should be sufficient for
that [11,12].

2.1. Function spaces

It seems uneconomical to restrict oneself at the outset to a particular function space in which to
search for solutions. Therefore I shall merely give a list of properties which will be used in the
subsequent proofs, and leave it to the reader to check whether her or his favourite space fulfills
these requirements. To ensure that the conditions are not contradictory, I shall however point
out a space in which they are satisfied.

2.1.1. Abstract definition

Let Σ be some subset of R3 (R denotes the real numbers). I assume that there exist three real
Banach spaces Fj , j = 0, 1, 2, of functions f : Σ → R or of equivalence classes of such functions.
They are assumed to have the following properties:

(2.1) Addition and scalar multiplication are induced by pointwise operations.

(2.2) Multiplication, defined pointwise, results in the following bilinear bounded maps:

· :F2 × F2 → F2, · :F1 × F1 → F0, · :F2 × F0 → F0.
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(2.3) There are three “differential operators” ∂/∂xi,

∂

∂xi
:F2 → F1,

∂

∂xi
:F1 → F0, i ∈ {1, 2, 3},

they are linear and bounded, and they commute on F2.

(2.4) The Laplacian

4:F2 → F0, 4 f :=
3∑

i=1

∂2f

∂ (xi)2
,

is bijective.

(2.5) F2 does not contain a constant function except 0.

(2.6) F2 is a subset of the Banach algebra B := B(Σ,R) of bounded functions on Σ, and the

inclusion i:F2 → B is continuous.

(2.3) shows that the index “j” in “Fj” refers to a level of differentiability. Because of (2.3),
(2.4), and the open mapping theorem (maps which are linear, continuous, and surjective are
also open), the Laplacian is a homeomorphism. Condition (2.5) could also be derived from
(2.1), (2.2), (2.4), and the following additional assumptions:

· :F2 × F1 → F1,
∂

∂xi
(ab) =

∂a

∂xi
b+ a

∂b

∂xi
for a, b ∈ F2. (2.7)

Note as a curiosity that except in condition (2.7) nothing is assumed to justify the expression
“differential operator” for ∂/∂xi.

One further condition remains to be stated:
(2.8) There is a fourth Banach space F−1, the operators ∂/∂xi are also defined on F0 with

∂

∂xi
:F0 → F−1,

they commute on F1, and the Laplacian 4:F1 → F−1 is injective.

I have kept this requirement separate from the previous ones because it is not needed for develop-
ing the approximation method. It will merely be used to prove that solutions of the Newtonian
theory in its usual form are also solutions of certain equations employed here.

From F2 I construct an additional set:

K2 := { g: Σ → R | ∃a ∈ R, f ∈ F2 : g = a+ f }. (2.9)

Because of the properties (2.1) and (2.5), a and f are uniquely determined by g. Now define

||g||K2
:= |a|+m||f ||F2

, (2.10)

where m ∈ R is a positive bound on the multiplication in F2: ||f1 · f2||F2
≤ m||f1||F2

||f2||F2
.

Thus K2 is seen to be a Banach space, the direct sum R⊕F2. Defining again multiplication by
pointwise operations, we find by (2.1), (2.2), and the scalar multiplications in F2 and F0:

· :K2 ×K2 → K2, · :K2 × F0 → F0, bilinear and continuous. (2.11)

The first property shows thatK2 is a Banach algebra (m has been included in the definition (2.10)
in order to obtain ||g · f ||K2

≤ ||g||K2
||f ||K2

). K2 is commutative, and because the function equal
to 1 everywhere belongs to it, it has a unit element. The operators ∂/∂xi can be linearly and
continuously extended to K2 by defining

∂

∂xi
(a+ f) :=

∂

∂xi
f, (2.12)

as is obviously sensible. And finally, because of (2.6) the elements of K2 are continuously
embedded in the bounded functions. Because of (2.1) and (2.2), the resulting inclusion i:K2 → B
is a homomorphism for Banach algebras.
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2.1.2. Example

For Σ = R
3, a possible realization of the Fj is given by certain weighted Sobolev spaces [14].

They can be defined as follows [15]: given a non-negative integer s and a real number δ, consider
the set of functions locally in L2 with the property that all distributional derivatives up to the
order s are again locally in L2. The weighted Sobolev space Hs,δ := Hs,δ(R3,R) is then the
subset for which the following norm exists:

||f ||s,δ :=
√∑

α,
|α|≤s

(∣∣∣∣σ|α|+δDαf
∣∣∣∣
L2

)2
. (2.13)

Here α = (α1, α2, α3) is a multi-index, |α| = α1 + α2 + α3, σ :=
√

1 + |~x|2 is a weight factor
enforcing suitable fall-off at infinity,

Dαf :=
∂|α|f

∂α1x ∂α2y ∂α3z
, (2.14)

and
||g||L2 :=

√∫
|g|2 dµ (2.15)

is the usual norm of L2(R3,R). These sets turn out to be real Banach spaces under pointwise
addition and scalar multiplication. If one chooses

s ≥ 2, − 3
2 < δ < − 1

2 , F2 := Hs,δ, F1 := Hs−1,δ+1, F0 := Hs−2,δ+2, (2.16)

and ∂/∂xi as the distributional derivative (or, equivalently, as the unique continuous extension
of the usual differential operators on C∞ functions), conditions (2.1) to (2.6) are satisfied. (2.1)
is already valid in L2, (2.2) can be found in [15], (2.3) is trivial, (2.4) is contained in [16,15],
(2.5) holds because (2.7) is satisfied (the multiplication property is proven in [15]), and (2.6) is
shown in [15]. In addition, the requirement (2.8) is also fulfilled, provided

s ≥ 3, F−1 := Hs−3,δ+3 : (2.17)

the injectivity of 4 on F1 holds under these circumstances because for − 3
2 < δ < − 1

2 the
Laplacian is injective on H2,δ+1 [16], and because for s ≥ 3 the space F1 = Hs−1,δ+1 is a subset
of H2,δ+1.

The degree s of differentiability of a function is usually not important for physical applications,
but the behaviour at infinity is. It is therefore reassuring to find that for example the function(

1 + |~x|2
)−α/2

, α > δ + 3
2 ,

which has a fall-off like r−α, is still in Hs,δ. We shall see in a later section that F0 is the
space for components of the matter tensor, therefore one can by using F0 = Hs−2,δ+2 treat
matter distributions with a fall-off like r−β , β > 2, and that includes even cases with infinite
total mass. One can therefore conclude that the spaces Hs,δ are sufficiently large to contain
interesting solutions. On the other hand, knowing that a solution belongs to Hs,δ does not tell
us much about it. If one needs solutions with more restricted properties (e.g., finite ADM mass)
one can try to characterize these as subsets, or even look for other function spaces containing
only elements satisfying the additional requirements. This is another reason for keeping proofs
independent of a particular function space.
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2.2. Functional analysis

2.2.1. Differentiability and analyticity

For any pair of Banach spaces E, F the sets of multilinear continuous maps from E to F

are denoted by Li(E,F ), with i giving the number of arguments (L0(E,F ) := F , L(E,F ) :=
L1(E,F )). Defining algebraic operations pointwise and taking the usual supremum norms these
sets are Banach spaces.

For any open subset A of E the notation Ck(A,F ) refers to the set of functions f :A → F of
differentiability class Ck. Here k is an element of N := N

∗ ∪ {∞, ω}, with N∗ denoting the
positive integers (N refers to the non-negative ones), C∞ infinitely differentiable functions, and
Cω the analytic ones. I use the following definition of analyticity ([17], definition 15.1):

Definition. A function f :A→ F is said to be of class Cω(A,F ), if for each x0 ∈ A there

exists a positive r ∈ R and a sequence (fi)i∈N of continuous i-linear symmetric maps from

E to F , such that

∞∑
i=0

||fi||Li(E,F )
ri exists, and

f(x) =
∞∑

i=0

fi(x− x0, . . . , x− x0︸ ︷︷ ︸
i times

) for all x such that ||x− x0|| < r.

If E = R, we have fi(x−x0, . . . , x−x0) = fi(1, . . . , 1)(x−x0)i, and the definition reduces to the
statement that a function is called analytic if it can be represented by an absolutely convergent
power series.

The following statements for Ck-functions will be used frequently:

— Concatenation of two Ck-functions results in a Ck-function.

— A linear or bilinear continuous function is Cω.

— Cω(A,F ) ⊂ C∞(A,F ).

If f is a differentiable function, Df(x0) is used to denote its derivative at x0. One should never
forget that derivatives at a point are maps: an expression like Df(x0)−1 refers to the inverse
map, not to something one might write as 1/Df(x0). If f has several arguments, Djf(x1, . . . , xn)
denotes the partial derivative with respect to the jth argument.

2.2.2. The implicit function theorem

An important tool will be the following theorem [12,17]:

Implicit Function Theorem. Let E, F , G be Banach spaces, A an open subset of E×F ,

(x0, y0) ∈ A, f ∈ Ck(A,G) for some k ∈ N, f(x0, y0) = 0, and assume that D2f(x0, y0) is

bijective.

Then there exist open neighbourhoods V of (x0, y0) in A and L of x0 in E, and a function l ∈
Ck(L,F ), such that for all (x, y) ∈ E × F the following is true:

x ∈ L, y = l(x) ⇐⇒ (x, y) ∈ V, f(x, y) = 0. (2.18)
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The theorem tells us that on L there is a solution l of f(x, l(x)) = 0, and that on V there are
no other solutions (x, y) of f(x, y) = 0.

The proof of this theorem involves the application of Banach’s fixed point theorem, i.e., one con-
structs certain sequences converging to values of the solution. This is of course an approximation
method, and closer inspection shows that one can even get an upper bound on the difference
between approximation and solution. One possible summary of this result is the following

Prescription: Consider the function

g ∈ Ck(A,F ), g(x, y) := y −D2f(x0, y0)−1
[
f(x, y)−D1f(x0, y0)(x)

]
. (2.19)

Choose a positive real number a < 1 and find a positive r ∈ R such that the closed ball

with radius r around (x0, y0) is contained in

V (a) := { (x, y) ∈ A | ||Dg(x, y)||L(E×F,F )
≤ a }. (2.20)

Such an r exists, because the derivative Dg is continuous and we have Dg(x0, y0) = 0. Now

let

s :=
1− a

||k||L(E,E×F )

r, k(x) :=
(
x, −[D2f(x0, y0)−1 ◦D1f(x0, y0)](x)

)
. (2.21)

Then every x ∈ E satisfying ||x− x0||E ≤ s belongs to L, and for each such x the sequence

(lj(x))j∈N,

l0(x) := y0 −
[
D2f(x0, y0)−1 ◦D1f(x0, y0)

]
(x− x0),

lj+1(x) := lj(x)−
[
D2f(x0, y0)−1 ◦ f

]
(x, lj(x)), j ∈ N,

(2.22)

is well-defined and converges to the value of the solution at x:

||lj(x)− l(x)||F ≤ aj

1− a
Q(x), j ∈ N. (2.23)

Here Q(x) describes the quality of l0(x) as an approximation:

Q(x) := ||D2f(x0, y0)−1||L(G,F )
||f(x, l0(x))||G. (2.24)

Other versions are possible; this particular one is merely intended to give an indication of the
kind of statement we can obtain. It can be derived by applying an appropriate version of the
inverse function theorem to f̃(x, y) := (x, f(x, y)).

Sometimes it is possible to extend the set L in the implicit function theorem on which the
solution is defined by matching various local solutions. The following lemma gives conditions
under which two local solutions agree on a common domain of definition.

Lemma 2.1. E, F , G are Banach spaces; V ⊂ E × F is open; f :V → G. f has the

property that for every (x0, y0) in V there is a neighbourhood V0 in V such that for all

(x, y1), (x, y2) in V0 we have:

f(x, y1) = 0 = f(x, y2) =⇒ y1 = y2. (2.25)

10



Let W be a connected subset of E and let li ∈ C0(W,F ), i = 1, 2, be solutions of:

(x, l(x)) ∈ V, f(x, l(x)) = 0 for all x ∈W . (2.26)

Finally, assume that there is an x̂ ∈W such that l1(x̂) = l2(x̂).

It then follows that l1 = l2.

The proof consists in showing that the subset Q of W on which both solutions agree is open
and closed. Because W is connected, Q must then either be empty or identical with W , and the
first possibility is excluded by the existence of x̂.

The condition imposed on f can be paraphrased by saying that f is “locally injective for solu-
tions”. Note that this is a consequence of the property

(x, y) ∈ V, f(x, y) = 0 =⇒ x ∈ L, y = l(x) (2.27)

ensured on the set V appearing in the implicit function theorem.

2.2.3. Banach algebras

Finally, I shall need a few facts about a Banach algebra K with unit element e.

— The set of invertible elements

Inv(K) := { a ∈ K | ∃b ∈ K: a · b = e = b · a } (2.28)

is open in K, and contains the open ball W := { a ∈ K | ||a − e|| < 1 }. For an a ∈ Inv(K),
the inverse b is uniquely determined and also an element of Inv(K), and the map a 7→ b is
in Cω(Inv(K),K). (Start from [11], section 4.8. This is basically due to the convergence of
the geometric series.)

— If K is commutative, then for every a ∈ W there is a unique element
√
a of W satisfying

(
√
a)2 = a. The map a 7→

√
a is in Cω(W,K). (The binomial series of index 1

2 is responsible
for existence and analyticity.)

3. Deriving the equations

3.1. Variables

Given a metric tensor gµν (Greek indices take values in {0, 1, 2, 3}, Latin indices in {1, 2, 3}) one
can define the tensor density

gαβ :=
√
g gαβ , g := |det(gµν)| . (3.1)

In the case of Minkowski space and signature +2 (or −+++) there exist coordinates xµ (I also
write t for x0) such that (gµν) = (g

0
µν) := diag(−c2, 1, 1, 1) and hence

(
gαβ
)

=
(
g
0

αβ
)

:=


−ε 0 0 0
0 1/ε 0 0
0 0 1/ε 0
0 0 0 1/ε

 , ε :=
1
c
, (3.2)
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where c is the velocity of light. Using a particular coordinate system to define such a reference
metric, we can form the tensor density [18]

Uαβ :=
1

4ε3
(
gαβ − g

0

αβ
)
. (3.3)

It can be used as a variable instead of gµν , as the latter can be recovered from it:

gστ = g
0

στ + 4ε3Uστ , g = |det(gµν)| , gαβ =
1
√
g
gαβ . (3.4)

I shall frequently use separate names for particular components:

U := U00, W a := U0a, Zab := Uab. (3.5)

The relativistic space-times (M, gµν) considered in this paper can now be characterized by the
following properties:

The manifold M is a subset of R4, and there exist on M global coordinates (t, xa) satisfying:

(3.6) xµ = 0 or equivalently gµν
,ν = 0 (harmonic coordinates).

(3.7) The hypersurfaces Σt of constant t are space-like and diffeomorphic to Σ.

(3.8) Uαβ restricted to Σt belongs to S4(F2), where Sn(F ) denotes the n× n symmetric

matrices with components in the Banach space F .

(3.9) The time derivative ∂/∂t (or ˙ ) satisfies on Σt:

(a) U̇αβ belongs to S4(F1), Üαβ to S4(F0).

(b) ∂/∂t commutes with the ∂/∂xa.

The immediate introduction of the xµ simplifies the necessary statements but obscures the
underlying geometric structures. I have introduced here on an orientable manifold a background
Lorentz metric g

0
µν and a vector field B = ∂/∂t which is time-like and vorticity-free with respect

to this background. (dt can be derived from ∂/∂t. The converse is not true in Newtonian theory,
hence ∂/∂t is the fundamental object.) Together these also define a Euclidean metric

eµν := g
0
µν + ε2(1 + ε2)g

0
µσg

0
ντB

σBτ = δµν (3.10)

which will play a rôle later on. (Strictly speaking, “1 + ε2” should be “1 + v2ε2” with a positive
constant v having the dimension of a velocity. As different v result in equivalent metrics, however,
we are free to choose v = 1 in whichever system of units we use.) The function spaces Fj are
based on these background objects. Given the metric gµν , the background has to be chosen such
that the resulting Uαβ has the properties desired.

From now on, all fields on space-time are considered as maps from t into function spaces on Σ,
and the field equations are equations for these maps. In particular, the constraints are equations
for values at t = 0. By “hiding” thus the argument (xa) which varies over Σ, we are able to
obtain statements which are valid on all of Σ.
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3.2. Field equations

The equations to be satisfied by the unknown relativistic solution S1 are of course Einstein’s
equations

Gαβ =
8πG
c4

Tαβ , (3.11)

with Gαβ = Rαβ− 1
2Rg

αβ being the Einstein tensor, Rµν = Rσ
µσν the Ricci tensor, R = gστRστ

the Ricci scalar, Rα
βγδ = Γα

δβ,γ − Γα
γβ,δ + Γα

γσΓσ
δβ − Γα

δσΓσ
γβ the Riemann tensor, and G the

gravitational constant. The matter tensor Tαβ should be thought of as a function (“matter
model”) of the metric and of certain unspecified matter variables. It does not explicitly depend
on xµ.

Rewriting the equations in terms of the Uαβ we obtain

Eαβ = 4πG |d|Tαβ , (3.12)

where (compare with [13] §20.3):

Eαβ := Hαβ +Aαβ + λBαβ + λ2Cαβ ,

Hαβ := gµνUαβ
,µν − 2gµ(αUβ)ν

,µν + gαβUµν
,µν ,

Aαβ := 2
(

1
2gµνgστ − gτµgσν

) (
gαηgβκ − 1

2gαβgηκ
)
Uµν

,ηUστ
,κ,

Bαβ := 4gµν

(
2gη(αUβ)ν

,κUµκ
,η − 1

2gαβUµσ
,τUντ

,σ − gστUαµ
,σUβν

,τ

)
,

Cαβ := 4
(
Uαβ

,µUµν
,ν − Uαµ

,νUβν
,µ

)
,

(3.13)

and I have defined:

λ := ε2, gαβ := εgαβ , (gµν) := ε(gαβ)−1, d := λ det(gαβ). (3.14)

By direct computation we find:

gαβ = g
0

αβ + 4λ2Uαβ , (g
0

αβ) = diag(−λ, 1, 1, 1), (gµν) =
adj(gαβ)

d
,

d = −1 + λ 4U − λ2 4 trZ + λ3 16(U trZ −W 2)− λ4 8(tr2Z − trZ2)

+ λ5 64
(
U 1

2 (tr2Z − trZ2)−W 2 trZ + (−→W,Z
−→
W )
)

− λ6 64 detZ + λ7 256
(
U detZ − (−→W, adjZ −→W )

)
.

(3.15)

Here I have employed the usual notation for vectors and matrices on Rn. In particular, tr is the
trace operator, (. . . , . . .) the scalar product, and adj denotes the adjoint matrix (the transpose
of the matrix of cofactors).

Now assume that ε is allowed to vary from its previously fixed value of ε = ε1 := 1/c. Then
(3.13) defines Eαβ in terms of λ, Uαβ , gστ , and gµν . The last two can be expressed in terms
of Uαβ by means of (3.4) and (3.14), but that relation is not defined for ε = 0. In contrast,
(3.15) characterizes gαβ and gµν for arbitrary values of ε, provided the additional variable d is
non-zero. Therefore, (3.15) will now be considered as the definition of gαβ , gµν , and d. Eαβ is
then a function of λ and Uµν , defined for every argument resulting in a non-vanishing d.

The rôle of d can be understood by going to the frame theory. Although there is no 4-dimensional
non-degenerate metric at λ = 0, it is still possible to define for every value of λ a 4-dimensional
invariant volume form, unique up to orientation. Apart from the restrictions imposed by anti-
symmetry it has only one non-zero component, and that is described by d.
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As can now be seen immediately, Eαβ contains ε only in the form of non-negative integer powers
of λ. Hence it seems safe to take λ instead of ε as our basic variable. It is also not difficult to
check that a solution of (3.12) for any positive λ is a solution of Ehlers’ frame theory with λ
being the causality constant. If Tαβ is defined for λ = 0, the first fact shows that it is possible
to put λ = 0 in (3.12), and the second suggests that this might result in Newtonian equations.

The frame theory shows that the equations of motion Tαβ
;β = 0, which for λ 6= 0 follow from the

field equations, have to be imposed as an additional axiom if λ = 0 (the equation of continuity
and Euler’s equation do not follow from the Poisson equation for the Newtonian potential). One
should therefore instead of (3.12) and the conditions (3.6) for harmonic coordinates consider the
following set of equations [19]:

Eαβ = 4πG |d|Tαβ , Tαβ
;β = 0, Uµν

,ν = 0. (3.16)

These together with (3.13), (3.15), and the relations

Γα
βγ = gαµ(2gβσgγτ − gβγgστ )Uστ

,µ + 2λ(gστδ
α
(βUστ

,γ) − 2gσ(βUασ
,γ)) (3.17)

are the “ε-equations” for the method proposed here (although the parameter is called λ and
not ε). The relativistic solution S1 to be approximated is obviously a solution of (3.16) for
λ = λ1 := ε21. But is a solution of (3.16) for λ = 0 a Newtonian solution?

3.3. The field equations at λ = 0
Putting λ = 0 in (3.16) we obtain the following equations:

4U = 4πG%, 4W a = 4πGja, 4Zab = 4πGSab + U,aU,b − 1
2 |∇U |

2
δab,

%,0 + jb
,b = 0, ja

,0 + Sab
,b = −%U,a, Uµν

,ν = 0.
(3.18)

Here I have introduced density, current, and stress tensor:

% := T 00, ja := T 0a, Sab := T ab. (3.19)

(For a perfect fluid with velocity field va and pressure p, the last two are ja = %va and Sab =
%vavb + pδab.) Note that U is opposite in sign to the potential used in some post-Newtonian
methods. The choice made here agrees with the convention in classical mechanics that the force
is equal to minus the gradient of the potential. This introduces a minus sign in front of the
Poisson integral, and methods making heavy use of the latter therefore prefer to shift the minus
sign to Poisson’s equation.

An important point in (3.18) is that all the equations for the gravitational field are elliptic and
not hyperbolic, in contrast to the situation in general relativity. This has consequences for the
nature of observable effects, but also for the treatment of the Cauchy problem. In the last
section, I shall try to connect this fact with the breakdown of post-Newtonian methods.

By dropping the harmonicity condition and the equations for W a and Zbc we see that any
solution (Uαβ , Tµν) of (3.18) gives also a solution (U, %, ja, Sbc) of the Newtonian theory of
gravitation. Now suppose that a Newtonian solution is given. Because the Laplacian4:F2 → F0

is bijective, the Poisson equations for W a and Zbc can be solved uniquely. Hence, a Newtonian
solution determines a pair (Uαβ , Tµν) of which we know that all the equations above are satisfied,
possibly except Uµν

,ν = 0. We now assume in addition (2.8) and obtain by insertion of the Uαβ

in the equation of continuity and Euler’s equation:

0 = %,0 + jb
,b =

4U0β
,β

4πG
, 0 = ja

,0 + Sab
,b + %U,a =

4Uaβ
,β

4πG
. (3.20)
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Because the Laplacian is injective on F1 we can conclude that Uαβ
,β = 0 and hence that there

is a one-to-one correspondence between Newtonian solutions and solutions of (3.18).

Note that W a and Zbc are physically irrelevant if λ = 0 (they disappear from the metric and
the connection). Nevertheless, (3.18) determines them uniquely. This is not a deficiency but
instead an indication of the suitability of (3.16)! No system of equations for the Uαβ could be
well-behaved at λ = 0 if some of the variables were not contained in it any more at that point.

3.4. The relativistic Cauchy problem

It is well known (see most textbooks on general relativity) that the solution of the Cauchy
problem for Einstein’s equations has to be divided into two steps. In the first, one prescribes free
data on an initial hypersurface Σ0 and solves constraint equations for some additional functions
on this surface. Together with the free data, these form the input for step two in which one
solves evolution equations for a solution in the neighbourhood of the initial surface. Because of
the tensorial nature of the equations and the absence of tensorial theorems about their solutions
it is also necessary to add a coordinate condition. Experience shows that harmonic coordinates
are a useful choice, and this is enforced here by the observation that for a suitable choice of the
spaces Fj Newtonian solutions are automatically harmonic if expressed in the usual coordinates
of classical mechanics. (There are actually two notions of harmonicity here: xµ = 0 and
Uαβ

,β = 0. For λ 6= 0 they are equivalent, but in the case λ = 0 the first is much weaker than
the second. The latter is the one used here.)

The constraint equations are geometrical in origin and therefore must be present in (3.16). It
only remains to identify them in this formulation by looking for four relations not containing
second-order time derivatives. First note that the harmonicity condition can be written

U̇ = −W b
,b, Ẇ a = −Zab

,b, (3.21)

and can therefore be used to eliminate all t-derivatives of U and W a from the equations. This
identifies U̇ and Ẇ a as functions which cannot be part of the set of free data. Furthermore,
inspection of the second-order derivatives in H0α reveals that after substitution of (3.21) these
four expressions depend only on λ, U , W a, Zbc, Żde, and their spatial derivatives, but not
on Z̈ab:

H00 = 4U − λZcd
,cd + 4λ2

(
ZcdU,cd − 2W c

,cdW
d + UZcd

,cd

)
,

H0a = 4W a + λŻac
,c + 4λ2

(
ZcdW a

,cd − 2Zac
,cdW

d − UŻac
,c

)
.

(3.22)

Therefore, if one can choose a set of matter data such that T 0α is also independent of Z̈ab, the
constraint equations should be:

E0α = 4πG |d|T 0α after substitution of (3.21) and evaluated on Σ0. (3.23)

For this reason I shall adopt the following prescription [20] for the first step in the solution of
the Cauchy problem at λ = λ1:

— Choose on the initial hypersurface as free data Zab, Żcd, and a suitable set m of matter
variables.

— Solve the equations (3.23) for U and W a.

— Determine U̇ and Ẇ a from (3.21).

The description of the evolution equations will be omitted here. As I have no statement about
the existence of solutions to these equations in the function spaces considered, I can’t be sure
of having a sensible form for them anyway.
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Note that I have been concerned here with the relativistic case, i.e., positive λ. This is not the
correct way to approach the Cauchy problem for λ = 0, as can be seen from the equation for Zab

in (3.18). I shall come back to this point in the last section. Until then, the reader should not
be unduly bothered by this problem, because our goal is after all to obtain the relativistic and
not a Newtonian solution.

4. Properties of the parametrized constraint equations
I use the expression “parametrized constraints” as an abbreviation for “those equations param-
etrized by λ which for λ = λ1 are the relativistic constraints”, i.e., (3.23). The aim of this
section is to prove that there exists a unique and well-behaved map from λ and the relativistic
free data (Zab, Żcd,m) to solutions of (3.23) in a neighbourhood of λ = 0, and to show how
approximations for solutions can be generated.

4.1. Properties of the metrics and of Eαβ

The purpose of the following lemma is to identify a set A1 on which the metric functions gαβ ,
d, and gµν behave as desired, when considered as functions of λ and Uαβ .

Lemma 4.1. Let Uµν be in S4(F2), and define by (3.15) gαβ and d for every (λ,Uαβ), and

gµν for every (λ,Uαβ) for which d(λ,Uαβ) belongs to Inv(K2).

Then we have:

(a) The map (λ,Uµν) 7→ gαβ is in Cω(R × S4(F2), S4(K2)), and (λ,Uµν) 7→ d belongs to

Cω(R× S4(F2),K2).

(b) The set

A1 := { (λ,Uαβ) ∈ R× S4(F2) | d(λ,Uαβ) ∈ Inv(K2) and in each point of Σ

gαβ(λ,Uµν) can be diagonalized to diag(−λ, 1, 1, 1) }
(4.1)

is open and contains all pairs with λ = 0. (It also contains all points with Uαβ = 0, but

that is only of interest for post-Minkowskian methods.) On A1 we have:

d(λ,Uαβ) < 0. (4.2)

(c) The map (λ,Uµν) 7→ gαβ belongs to Cω(A1, S4(K2)).

This definition of A1 ensures that in the case of positive λ the metric has Lorentz signature.

Proof: (a) Consider as an example the component g00(λ,Uαβ) = −λ + 4λ2U . The projections
(λ,Uαβ) 7→ λ and (λ,Uαβ) 7→ U are linear and continuous, therefore Cω. λ 7→ λ2 is Cω.
(λ2, U) 7→ 4λ2U is bilinear and continuous (scalar multiplication in F2), therefore Cω. The
canonical inclusions R → K2 and F2 → K2 are linear and continuous, hence Cω. Finally,
addition in K2 is bilinear and continuous, and therefore (λ, 4λ2U) 7→ g00 is Cω. The chain
rule then gives the result that (λ,Uαβ) 7→ g00 is an element of Cω(R× S4(F2),K2). The other
components can be treated similarly.

For d, one also has to exploit the fact that multiplication in F2 is bilinear and continuous with
values in F2.
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(b) Consider the set

C := { (λ,Uαβ) ∈ R× S4(B) | d(λ,Uαβ) ∈ Inv(B) and in each point of Σ

gαβ(λ,Uµν) can be diagonalized to diag(−λ, 1, 1, 1) },
(4.3)

where B again refers to the Banach algebra of bounded functions on Σ. Suppose we had already
shown that this set is open with respect to the norm induced from R and B and that it contains
all pairs (0,Uαβ). Then let i:R × S4(F2) → R × S4(B) be the continuous embedding existing
by virtue of (2.6). Because Inv(K2) is a subset of Inv(B) (remember that the embedding of K2

in B is also a homomorphism for the multiplication), we can rewrite the definition of A1 as:

A1 = d−1(Inv(K2)) ∩ i−1(C).

But this is an intersection of two open sets (pre-images of open sets under continuous maps) and
therefore also open. In addition, all pairs (0,Uαβ) belong to d−1(Inv(K2)), because d(0,Uαβ) =
−1 ∈ Inv(K2). Thus it is sufficient to restrict our attention to C, and to prove that it is open
in R× S4(B) and contains all pairs (0,Uαβ).

Because gαβ is a tensor density of weight +1, it is not obvious what I mean by “diagonalization”.
I define it to mean that in each point of Σ there is a collection of 4 tensor densities E(α)

β of
rank 1 and weight − 1

2 such that:

det(E(α)
β) > 0,

(
gστ (λ,U)E(α)

σ E
(β)

τ

)
= diag(−λ, 1, 1, 1). (4.4)

Hence the right-hand side denotes a collection of scalars, not a rank-2 tensor or a tensor density.

Putting λ = 0 and E(α)
β = δα

β we see that (4.4) is satisfied. Together with d(0,U) = −1 ∈ Inv(B)
this means that all (0,U) belong to C. Taking the determinant of (4.4) and using det(gαβ) = λd
we obtain (4.2) for non-zero λ, d(0,U) = −1 completing the statement for all of C ⊃ A1. It
remains therefore to show that C is open.

Most people will believe or even know that in the set of symmetric matrices the non-degenerate
matrices of a particular signature form an open subset. The statement to be proven here goes
beyond this in two respects: first we need that C is open in the norm of bounded functions, i.e.,
uniformly over Σ. The second point is due to our desire to obtain an open set containing all
points with λ = 0 and leading to a Lorentz metric for λ > 0. Hence it is unavoidable to require
a λ-dependent rank and signature of gαβ , and therefore the fact that C is open is a property
of this particular map (λ,U) 7→ gαβ , and cannot be reduced to a property of the set of all gαβ .
This unfortunately entails a certain amount of uninteresting detail.

For the ensuing estimates I must select one of the norms inducing the usual topology on S4(B).
I choose the “operator norm”

||U||B4×4 := sup
{ ||UαβVαWβ ||B
||V ||B4 ||W ||B4

∣∣∣ V , W ∈ B4 and non-zero
}

(4.5)

induced from B4×4, because it leads directly to the estimate

||UαβVαWβ ||B ≤ ||U||B4×4 ||V ||B4 ||W ||B4 ,

and that will be used frequently. The norm ||V ||B4 on bounded tensor densities Vα of weight − 1
2

is defined by means of the tensor density of weight +1 associated with the Euclidean metric eµν
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defined in (3.10). In the coordinates chosen, however, tensor and tensor density both have the
components δµν , so this is a somewhat pedantic distinction:

||V ||B4 =
(∣∣∣∣∑3

µ=0(Vµ)2
∣∣∣∣
B

)1/2

.

Let there now be given an element (λ0,U0) of C. My aim is to prove existence of positive
numbers δ1, δ2 ∈ R such that for all (λ,U) in R× S4(B) we have:

|λ− λ0| < δ1, ||U− U0||B4×4 < δ2 =⇒ (λ,U) ∈ C.

I shall first show that there is a set of bounded E(α) diagonalizing gστ (λ0,U0), and then that for
sufficiently small δ1, δ2 these E(α) can be modified to give a set of F (α) diagonalizing gστ (λ,U).

The first step is trivial for λ0 = 0, because the E(α)
β = δα

β satisfying (4.4) in this case are
obviously bounded. Let therefore λ0 be non-zero. There is a theorem of algebra which tells us
that because gαβ(λ0,U0) is symmetric there exists (at each point of Σ) a basis {H (α)} which is
at the same time orthogonal with respect to gαβ(λ0,U0) and orthonormal with respect to δµν .
Because of the second property, these H (α) are bounded (||H|| = 1). As the signature is basis-
independent it can be arranged that the three diagonal elements of gστ (λ0,U0) belonging to
the H (a) are positive, and that the value belonging to H (0) has the sign opposite to that of λ0.
Putting

h
(0) :=

1
λ0

gστ (λ0,U0)H
(0)

σH
(0)

τ , h
(a) := gστ (λ0,U0)H

(a)
σH

(a)
τ

and
E

(α) := H
(α)
/
√
|h(α)|

we obtain a basis {E(α)} satisfying (4.4), but we do not yet know whether it is bounded. However,
because the H (α) are orthonormal with respect to δµν the coefficient matrix H (α)

β is orthogonal.
Taking the determinant of(

gστ (λ0,U0)H
(α)

σH
(β)

τ

)
= diag

(
λ0h

(0)
, h

(1)
, h

(2)
, h

(3))
and using det(gµν) = λd we obtain:

3∏
α=0

h
(α) = d(λ0,U0).

As d(λ0,U0) belongs to Inv(B) its inverse is defined and bounded. Hence there exists a positive
number a such that

∏3
α=0

∣∣h(α)
∣∣ = |d(λ0,U0)| ≥ a. On the other hand there is an upper bound

b ≥
∣∣h(α)

∣∣ because gαβ and the H (α) are bounded. We obtain:

∣∣h(α)
∣∣ = ∏3

µ=0

∣∣h(µ)
∣∣∏3

µ=0,µ6=α |h
(µ)|

≥ a

b3
.

Therefore each 1/
∣∣h(α)

∣∣ is bounded, and hence the E(α) are bounded as desired.

The remainder of this proof is concerned with showing that there exist positive real numbers δ1,
δ2, ζ, and η such that ζ < 1, η < 1, and for all (λ,U) satisfying |λ− λ0| < δ1 and ||U− U0|| < δ2
there exists a collection of F (α) such that:

det(F (α)
β) = det(E(α)

β), gστ (λ,U)F (α)
σ F

(β)
τ = 0 if α 6= β,∣∣f (a) − 1

∣∣ ≤ ζ,
∣∣f (0) + λ

∣∣ ≤ η |λ| .
(4.6)
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Here I have defined:
f

(α) := gστ (λ,U)F (α)
σF

(α)
τ . (4.7)

From (4.6) we can conclude that the F (α) form an orthogonal basis with respect to gαβ(λ,U),
and that the diagonal elements f (α) have the proper signs. Hence gαβ has the correct signature.
For non-zero λ (λ = 0 is trivial) we can also conclude that d(λ,U) belongs to Inv(B), because
the estimates ensure that the f (α) belong to Inv(B) and because we have:

d(λ,U) =
∏
f (α)

λ det2(F (µ)
ν)

=
∏
f (α)

λ det2(E(µ)
ν)

= −
∏
f (α)

λ
d(λ0,U0).

Here I have once more used det(gαβ) = λd. Therefore, (4.6) ensures that all these (λ,U) belong
to C. It remains to prove that statement.

First consider the case λ0 = 0. I can choose E(α)
β = δα

β and:

η ∈ R, 0 < η < 1, 0 < δ2 ∈ R,

δ1 :=
1
6η

(√
1 +

3η2

||U0||+ δ2
− 1

)
, γ := 4δ1(||U0||+ δ2), ζ := 3δ1γ.

(4.8)

This implies ζ = 1 − γ/η < 1. Now assume |λ| < δ1, ||U − U0|| < δ2. As a first step I prove by
induction over a:

For each a ∈ N∗, a ≤ 3, there exists a collection {F (j) | 1 ≤ j ≤ a } such that:

(i) F (j) − E(j) is a linear combination of the E(k) with k < j, and:

||F (j) − E
(j)|| ≤ γj

1− γj
,

where:

γl := |λ| (l − 1)γ < ζ < 1, 1 ≤ l ≤ 4. (4.9)

(ii) If j 6= k, F (j) is orthogonal to F (k) with respect to gαβ(λ,U).

(iii) ∣∣f (j) − 1
∣∣ ≤ |λ| γ

1− γj
.

For a = 1, (i) leaves no choice but to take F (1) = E(1), and (ii) is always true.∣∣f (1) − 1
∣∣ = ∣∣gστE

(1)
σE

(1)
τ − 1

∣∣ = 4λ2
∣∣Z11

∣∣ ≤ 4λ2||U|| ≤ |λ| γ,

and that gives (iii). Now assume that the conditions (i)–(iii) are true for some a. Because of
|λ| γ < δ1γ = ζ/3 we have: ∣∣f (j) − 1

∣∣ < δ1γ

1− 2δ1γ
< ζ < 1

and hence: ∣∣f (j)
∣∣ ≥ 1−

∣∣f (j) − 1
∣∣ ≥ 1− γj+1

1− γj
> 0.

Therefore I can use the Gram-Schmidt method of orthogonalization:

F
(a+1) := E

(a+1) −
a∑

j=1

q
(a+1)

j

f (j) F
(j)
, a < 3,
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where:
q

(α)

k := gστ (λ,U)E(α)
σ F

(k)
τ , α > k or α = 0. (4.10)

(We shall need α = 0 later.) This definition for F (a+1) ensures (ii) and also the first part of (i).
For the second part of (i) we need a few estimates:

||F (k)|| ≤ ||E(k)||+ ||F (k) − E
(k)|| ≤ 1

1− γk
,∣∣q(α)

k

∣∣ = 4λ2
∣∣UαbF

(k)
b

∣∣ ≤ 4λ2||U||||F (k)|| ≤ |λ| γ
1− γk

.

Hence:

||F (a+1) − E
(a+1)|| ≤

3∑
j=1

∣∣q(a+1)

j

∣∣
f (j) ||F (j)|| ≤ |λ| γ

a∑
j=1

1
(1− γj)(1− γj+1)

=
γa+1

1− γa+1
.

This proves (i), leaving (iii):

∣∣f (a+1) − 1
∣∣ ≤ ∣∣gστE

(a+1)
σE

(a+1)
τ − 1

∣∣+ a∑
j=1

∣∣q(a+1)

j

∣∣2
f (j)

≤ 4λ2||U||+
a∑

j=1

λ2γ2

(1− γj)(1− γj+1)

≤ |λ| γ
1− γa+1

.

This completes the induction, and (i)–(iii) are thus shown to be valid for a = 3. The next step
is to choose

F
(0) := E

(0) −
3∑

k=1

q(0)

k

f (k)F
(k)
,

in order to obtain the final vector for an orthonormal basis. Checking (4.6) we find that only
one statement remains to be proven, the estimate for f (0):

∣∣f (0) + λ
∣∣ = ∣∣gστE

(0)
σF

(0)
τ + λ

∣∣ ≤ ∣∣gστE
(0)

σE
(0)

τ + λ
∣∣+ 3∑

j=1

∣∣q(0)
j

∣∣2
f (j) ≤

≤ 4λ2||U||+
3∑

j=1

λ2γ2

(1− γj)(1− γj+1)
≤ |λ| γ

1− ζ
= |λ| η,

and thus the proof for (4.6) is complete in the case λ0 = 0.

I am not going to prove the case λ0 6= 0. The proof proceeds on exactly the same lines as
for λ0 = 0, the main difference being that |λ| γ can be replaced by a suitable ψ satisfying
||g(λ,U) − g(λ0,U0)|| ≤ ψ. The parameters δ1, δ2, ζ, and η will of course be different, also
the norms ||E(α)|| will now enter explicitly. For example, all the factors 3 in (4.8) are really∑3

j=1||E
(j)||2. If a reader does not believe the statement for this case, she or he should replace

“A1” by “open kernel of A1” in the remainder of the paper. The proof as far as it is given here
shows that this contains all points with λ = 0, and that is all which will be used.

(c) The components of the adjoint matrix adj
(
gαβ
)

are sub-determinants of
(
gαβ
)
, i.e., they are

built by multiplication and addition in K2. These are bilinear and continuous operations and
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therefore Cω. d maps A1 into Inv(K2), so 1/d is defined and belongs also to K2. Moreover, the
map d 7→ 1/d is Cω, and multiplying 1/d with adj

(
gαβ
)
µν in K2 we find by the chain rule that

gµν is a Cω function of (λ,Uαβ) on A1.

Having ensured that the functions defined in (3.15) are well-behaved, we can now approach
(3.13).

Lemma 4.2. Let

A2 := A1 × S4(F1)× S4(F0) ⊂ R× S4(F2)× S4(F1)× S4(F0). (4.11)

Then A2 is open, contains all points with λ = 0, and the maps (λ,Uαβ , U̇γδ, Üεζ) 7→ Eαβ

belong to Cω(A2, F0).

Proof: A2 is open and contains all points with λ = 0 because this is true of A1. It therefore
remains only to show analyticity. Looking at the form of Eαβ in (3.13) and keeping in mind the
lessons of the previous lemma we find that we merely have to check that a number of operations
are (bi-)linear and continuous with results in the correct function spaces.

Consider first the derivatives. The Uαβ
,µ are either U̇αβ (µ = 0) or Uαβ

,i. In the first case they
are among the independent variables, in the second they are obtained by a linear continuous
map from Uαβ . In both cases they belong to F1. Second order derivatives are in the same way
seen to be Cω functions with values in F0.

Having established this, Hαβ is seen to be Cω because of the properties of the multiplication
· :K2×F0 → F0 and of the addition in F0. Aαβ , Bαβ , and Cαβ follow suit with the multiplications
· :K2 ×K2 → K2, · :F1 × F1 → F0, and · :K2 × F0 → F0.

4.2. An interlude on perfect fluids

The main theorem later in this paper will require certain properties of the matter tensor. The
following lemma is intended as a side remark to show that these properties can be satisfied in
the case of an isentropic perfect fluid with a prescribed equation of state.

Lemma 4.3. The matter tensor for a perfect fluid in the frame theory is

Tαβ := (%+ λp)UαUβ + pgαβ (4.12)

with density %, pressure p, and 4-velocity Uα. Choose m := (%, va) ∈ M := F0 × K3
2 as

matter variables,

Ua = U0va,
√
|d| gµνU

µUν = −1, (4.13)

and assume an equation of state

p = z(λ, %), z ∈ Ck(A3, F0), (4.14)

for some k ∈ N and some open A3 ⊂ R× F0. Finally, let

A4 := { (λ,Uαβ ,m) ∈ A1 ×M | |d| ∈W, gµνv
µvν ∈ Inv−(K2), (λ, %) ∈ A3 }, (4.15)

with v0 := 1, W := { a ∈ K2 | ||a−1|| < 1 }, and Inv−(K2) denoting the everywhere negative

elements in Inv(K2).
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Then A4 is open and contains all (0,Uαβ ,m) for which (0, %) belongs to A3. The maps

(λ,Uαβ ,m) 7→ Tµν belong to Ck(A4, F0), and we have:

T 00 = %, T 0a = %va for λ = 0. (4.16)

Before I embark on the proof, a word of explanation seems necessary regarding the normalization
condition for Uα. It is equivalent to ĝµνU

µUν = 1 where ĝµν := −λgµν = −
√
|d| gµν is the

“time metric” of Ehlers’ frame theory, used to measure time intervals, whereas proper lengths
are determined with the help of the “space metric” gαβ = gαβ/

√
|d|. In the case λ = 0, these

two separate and it is no longer possible to determine one from the other. But the Uαβ determine
values for both.

Proof: The set Inv−(K2) is open because it can be written as Inv(K2) ∩ i−1(Inv−(B)), where
the inclusion i:K2 → B is continuous, and because Inv−(B) is open:

f ∈ Inv−(B), g ∈ B, ||g − f ||B <
1

||1/f ||B
=⇒ g ∈ Inv−(B). (4.17)

Because of (4.2), we have |d| = −d on A1 ×M . A4 is thus the intersection of four open sets:
the first is A1×M , and the other three are pre-images of open sets under continuous maps and
therefore also open. Thus A4 is open, and because the first three sets contain all values with
λ = 0, it contains all (λ = 0)-points for which (0, %) belongs to A3.

Now consider Tαβ . The main point to be shown is that UαUβ is a Cω function on A4. This
is due to the following facts: (a) −d is an analytic map from A4 to W , (b) the square root is
Cω on W with values in W , (c) W is a subset of Inv(K2), (d) gµνv

µvν belongs to Inv(K2),
(e) multiplication in Inv(K2) is Cω with values in Inv(K2), and (f) division on Inv(K2) is Cω.
All this tells us that

(U0)2 = − 1√
|d| gµνvµvν

(4.18)

is well-defined, positive, and in Cω(A4,K2), and the rest is simple.

4.3. Solution of the constraints

The independent variable (representing λ and the relativistic free data) in the parametrized
constraint equations is

x := (λ,Zab, Żcd,m) ∈ E := R× S3(F2)× S3(F1)×M, (4.19)

where M is some Banach space for the matter variables m. The solution to be determined is

y := (U,W a) ∈ F := F 4
2 , (4.20)

and we shall also need the space
G := F 4

0 . (4.21)

Eliminating ẏ and ÿ by means of the harmonicity condition (3.21) we obtain the parametrized
constraint equations (3.23) as a function of x and y,

fα(x, y) := E0α − 4πG |d|T 0α on Σ0, (4.22)

provided T 0α does not contain Z̈ab.
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Lemma 4.4. Let the maps (x, y) 7→ T 0α be in Ck(A5, F0), k ∈ N, for some open A5 ⊂ E×F
with the property:

(x, y) ∈ A5 and λ(x) = 0 =⇒ ∀y′ ∈ F : (x, y′) ∈ A5. (4.23)

On N × F ,

N := {x ∈ E | λ(x) = 0 and (x, y) ∈ A5 for some y ∈ F }, (4.24)

T 0α is assumed not to depend on y. (This means: the matter variables must be chosen such

that this is the case.) Further, let:

A := { (x, y) ∈ A5 | (λ,Uµν) ∈ A1 }. (4.25)

Then the following statements hold:

(a) A is open and contains N × F . The constraint function f is defined on A and belongs

to Ck(A,G).

(b) For every x0 ∈ N there is exactly one y0 ∈ F with f(x0, y0) = 0.

(c) For every (x0, y0) ∈ N ×F with f(x0, y0) = 0 there exist open sets L ⊂ E, V ⊂ A with

{x0} × F ⊂ V , and a function l ∈ Ck(L,F ) such that for all (x, y) ∈ E × F one has:

x ∈ L, y = l(x) ⇐⇒ (x, y) ∈ V, f(x, y) = 0. (4.26)

Proof: (a) A is the intersection of A5 with the pre-image of A1 under a continuous map and
therefore open. By assumption, A5 contains N × F , and A1 contains all points with λ = 0 (see
lemma 4.1). Hence N × F is a subset of A.

By lemma 4.2 we know that the Eαβ belong to Cω(A2, F0). The elimination of the time deriva-
tives of the U0α is described by the function:

s:S4(F2)× S3(F1) → S4(F2)× S4(F1)× F 4
0 ,

(Uµν ; U̇0α, Żab; Ü , Ẅ a) = s(Uστ , Żab) := (Uµν ;−Uαc
,c, Ż

ab;Zcd
,cd,−Żac

,c).
(4.27)

This map is Cω, because its components are built from continuous linear or bilinear operations.
Hence the E0α as appearing in f ,

E0α
(
λ, s(Uµν , Żab)

)
,

are seen to be in Cω(A,F0). The remaining term in f(x, y), 4πG |d|T 0α, is first converted to
−4πGdT 0α by taking into account (4.2), and the rest is left as an exercise for the reader.

(b) Putting λ = 0 and using A0α
∣∣
λ=0

= 0, H0α
∣∣
λ=0

= 4U0α (from (3.22)), and d|λ=0 = −1 we
see that for any x0 ∈ N , y ∈ F we have:

fα(x0, y) = 4U0α − 4πGT 0α(x0). (4.28)

The resulting four Poisson equations can be solved uniquely for the U0α, i.e., for y.

(c) For this point, we use the implicit function theorem. If we check its assumptions we find that
it remains only to verify that D2f(x0, y0) is bijective. But from (4.28) it follows immediately
that:

D2f
α(x0, y0)(η) = 4 ηα, η ∈ F. (4.29)
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Hence D2f(x0, y0):F 4
2 → F 4

0 consists of 4 independent Laplacians 4:F2 → F0 and is therefore
bijective. Copying the statement of the implicit function theorem we obtain (c) with a set V ′

satisfying only (x0, y0) ∈ V ′ instead of {x0} × F ⊂ V ′. But because G − {0} is open and f
is continuous, the set f−1(G − {0}) of all pairs (x, y) not satisfying the constraints is an open
subset of A. Because of (b), it contains all (x0, y), y ∈ F , with the exception of (x0, y0). Putting

V := V ′ ∪ f−1(G− {0})

we obtain an open subset of A, containing V ′ and {x0} × F , and having the property that any
(x, y) ∈ V with f(x, y) = 0 must belong to V ′. This completes the proof.

We now come to the final result:

Theorem (Solution of the Parametrized Constraint Equations)
Let M be a Banach space for the matter variables m,

x = (λ,Zab, Żab,m) ∈ E = R× S3(F2)× S3(F1)×M,

y = (U,W a) ∈ F = F 4
2 ,

G = F 4
0 ,

and assume for the matter tensor:

(x, y) 7→ T 0α ∈ Ck(A5, F0), k ∈ N, A5 ⊂ E × F open,

(x, y) ∈ A5 and λ(x) = 0 =⇒ (x, y′) ∈ A5 for all y′ ∈ F,
T 0α(x, y) = T 0α(x) if λ(x) = 0.

Then the parametrized constraints f(x, y) = 0,

f :A→ G, A = { (x, y) ∈ A5 | (λ,Uµν) ∈ A1 }, fα(x, y) = E0α − 4πG |d|T 0α,

with A1 from (4.1), are well-defined and satisfy:

There exist open neighbourhoods L ⊂ E of

N = {x ∈ E | λ(x) = 0 and (x, y) ∈ A5 for some y ∈ F }

and V ⊂ A of N × F and a map l ∈ Ck(L,F ) such that for all (x, y) in E × F we have:

x ∈ L, y = l(x) ⇐⇒ (x, y) ∈ V, f(x, y) = 0.

This theorem tells us that (a) in a neighbourhood L of N there exists a Ck map from data x to
solutions y of the parametrized constraints, and (b) that this map picks up all solutions (x, y)
in a neighbourhood V of the solutions belonging to data in N .

Proof: Take any x0 ∈ N . By lemma 4.4(b) there is a unique y0 ∈ F such that f(x0, y0) = 0,
and lemma 4.4(c) gives existence of L(x0), V (x0), and lx0 with the properties:

L(x0) ⊂ E open, V (x0) ⊂ A open,

lx0 ∈ Ck(L(x0), F ), {x0} × F ⊂ V (x0),

∀(x, y) ∈ E × F : x ∈ L(x0), y = lx0(x) ⇐⇒ (x, y) ∈ V (x0), f(x, y) = 0.

(4.30)
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To prove the statement of the theorem one has to show that on a suitable set L the various lx0

are simply restrictions of a map l defined on L. This, of course, is what lemma 2.1 is for. To
use it we have to make sure that for any pair L(x0), L(x′0) with non-empty intersection both
contain a point where lx0 and lx′0 agree. We know that they have to agree on N by lemma 4.4(b),
therefore one possibility is to restrict these neighbourhoods such that if they have a non-empty
intersection, it must contain a point of N .

First, select for each L(x0) an open convex subset L′(x0) which is still a neighbourhood of x0.
The projection onto the Newtonian plane,

π:E → E, π(λ,U, . . .) := (0,U, . . .), (4.31)

is linear and continuous, therefore K(x0) := π−1(L′(x0)) is open and convex (it is helpful to
draw a picture of E at this point). The set L′′(x0) := L′(x0) ∩ K(x0) then has the following
properties:

— it is open and convex,

— it contains x0,

— it is a subset of L(x0), and therefore lx0 is in Ck(L′′(x0), F ),

— it satisfies π(L′′(x0)) ⊂ L′′(x0) ∩N .

This leads to:
L := ∪

x0∈N
L′′(x0), V :=

(
∪

x0∈N
V (x0)

)
∩ (L× F ). (4.32)

These sets are open, L contains N , and V contains N × F .

f is “locally injective for solutions” on V as required by lemma 2.1: take any pair (x, y) ∈ V ; by
construction, there is an open neighbourhood V (x0) ∩ (L × F ) ⊂ V of (x, y) for some x0 ∈ N .
On V (x0) we have by (4.30):

(x′, y′) ∈ V (x0), f(x′, y′) = 0 =⇒ x′ ∈ L(x0), y′ = lx0(x
′),

and hence:

(x′, y′1), (x′, y′2) ∈ V (x0), f(x′, y′1) = 0 = f(x′, y′2) =⇒ y′1 = y′2. (4.33)

Now take any x ∈ L. I claim that the definition

l:L→ F, l(x) := lx0(x) for some x0 ∈ N with x ∈ L′′(x0), (4.34)

is free of contradictions. To prove this I have to show that any two possible lx0 , lx′0 agree in x.
Let L̂ := L′′(x0)∩L′′(x′0). L̂ is open and connected, and it contains x and x̂ := π(x) ∈ N , with
lx0(x̂) = lx′0(x̂) by lemma 4.4(b). For every x′ ∈ L̂ we have:

x′ ∈ L̂ ⊂ L′′(x0) ⊂ L(x0) =⇒ (x′, lx0(x
′)) ∈ V (x0),

and the same for x′0. Hence (x′, lx0(x
′)) ∈ V and (x′, lx′0(x

′)) ∈ V . We conclude from lemma 2.1
lx0 = lx′0 on L̂ and therefore that lx0(x) = lx′0(x). Besides that we have also obtained (x, l(x)) ∈
V and f(x, l(x)) = 0.

This leaves only uniqueness still unproven. Let (x, y) ∈ V , f(x, y) = 0. By definition of V there
is an x0 such that (x, y) ∈ V (x0), and (4.30) gives x ∈ L(x0), y = lx0(x). But (x, y) ∈ V also
implies (again by definition of V ) x ∈ L, and on L ∩ L(x0) we have lx0 = l, hence y = l(x).
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This theorem is proven here because of the statement it contains about the dependence of
solutions of the constraints on λ. Regarding existence and uniqueness of relativistic solutions
(λ = λ1), it presents nothing fundamentally new [20,21,22,23], although usually other variables
are employed and the equations are inverted in a neighbourhood of Minkowski space. It seems,
however, to have gone unnoticed so far that the proofs can be freed from their dependence on
particular function spaces and on the topological properties of the initial hypersurface. The
theorem given here covers local as well as global results, provided we can find suitable function
spaces for a given Σ. Strictly speaking this has been shown only for Σ ⊂ R

3, because this
paper is concerned with post-Newtonian methods, and in the Newtonian case Σ must carry
a Euclidean metric [3]. But the extension to other manifolds in general relativity should be
straightforward. Apart from continuity for multiplications and derivatives, the key requirement
seems to be that a certain elliptic operator for a Riemannian background metric is bijective
(for Minkowski space the flat Laplacian), if necessary paired with restriction to a boundary. It
would be desirable to approach the evolution equations in a similar spirit. There, a hyperbolic
operator for a background Lorentz metric should play a corresponding rôle (the wave operator
for Minkowski space). This might give a well-structured and comparatively simple proof for the
existence of solutions of Einstein’s equations in a neighbourhood of a known solution.

4.4. Application to approximations

Suppose one wishes to obtain a post-Newtonian approximation for a relativistic solution S1,
characterized by means of its free initial data (Zab

1 , Żcd
1 ,m1). The theorem in section 4.3 then

tells us that if (a) the matter variables have been chosen such that the matter tensor in the
Newtonian case does not depend on the gravitational potentials U and W a, (b) the matter
tensor is at least C1 in its arguments, and (c) x1 = (λ1, Z

ab
1 , Żcd

1 ,m1) belongs to a certain set L,
there exists a solution y1 = l(x1) of the constraint equations, unique in a set V . The theorem
does not tell us how large L or V are. However, a lower bound s on the radius of L around
any x0 ∈ N can be obtained from the prescription given in section 2, so provided we can find
a suitable collection (x0, a, r) (y0 is determined by x0) with ||x1 − x0||E ≤ s, we know that y1
exists. For this step it is in particular necessary to know a bound on ||4−1||L(F0,F2)

for the
function spaces one has chosen. Having thus established the existence of the solution we can try
to approximate it. I consider two possibilities: expansion in powers and iteration.

To use expansion in powers of a real parameter ε as a method of approximation we have first to
choose a family x = A(ε) of initial data. It should have the properties:

— A(0) = x0, A(ε1) = x1, A(ε) ∈ L for all 0 ≤ ε ≤ ε1.

— A is Ck′ in ε for some k′ ∈ N. This includes the requirement that λ(ε) must be Ck′ ,
admitting in particular λ = ε and λ = ε2.

Let m be the minimum of k and k′, where k is the degree of differentiability of the matter tensor.
By the theorem in section 4.3 we know that A generates a family B(ε) := (l ◦A)(ε) of solutions
of the parametrized constraints with l being Ck, and by the chain rule we conclude that B is a
Cm function of ε. It can therefore be expanded in a Taylor series, and for m = ω this series will
even converge for sufficiently small ε. We can insert A and B into the equations and differentiate
up to m times with respect to ε, because the equations are Ck by lemma 4.4(a). Putting ε = 0
we obtain a sequence of equations to be solved successively for the Taylor coefficients of B.
The quality of this approximation will depend on the choice of A, and in fact A can easily be
chosen such as to lead to no useful results at all (for example one can include a sine function of
sufficiently high frequency in order to force the radius of convergence to drop below ε1). This
method of expansion should therefore be supplemented by rules for choosing A, preferably by
error estimates depending on properties of A.
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In contrast, the method of iteration proposed here does not require the introduction of a family
of solutions. All that is needed is a suitable Newtonian starting point x0. The prescription in
section 2 then tells us that the sequence

zj := lj(x1), lj from (2.22), (4.35)

is guaranteed to satisfy

||zj − y1||F ≤ aj

1− a
Q(x1), Q from (2.24), (4.36)

and will therefore converge to y1. Because of D2f(x0, y0) = 4 on F 4
2 , one merely has to solve

successive Poisson equations to generate this sequence.

Presumably, other methods of iteration could also be used. If for example D2f(x1, y) can be
easily inverted on V , Newton’s method is an obvious choice, and will probably give a better rate
of convergence.

5. Conclusions, speculations, and remaining problems
The purpose of this paper was to provide a sound mathematical basis for the investigation and
justification of post-Newtonian approximation methods in general relativity.

Starting with general requirements for an approximation method and giving a definition of
“post-Newtonian approximation” we were led to a set of requirements to be satisfied by such
a method. This included in particular the necessity of proving that unknown solutions can
be characterized by specifying data, the justification of the method thereby being reduced to
identifying those data for which the method works. I have then tried to point out in which
respect I consider previous approaches unsatisfactory.

Probably most people will agree that the requirements I have listed are desirable properties of
an approximation method, the only question being whether these conditions can be satisfied.
The main body of the paper was therefore concerned with the proof that in the context of a
space-like initial value problem it is possible to define a post-Newtonian approximation method
for solutions of the constraints which has the desired properties.

In the course of that proof we also obtained the statement that families of data which are Ck in
a parameter ε lead to families of solutions of the constraints having the same property, provided
the matter tensor is well-behaved. This shows in particular that whatever problems might be
responsible for the breakdown of the usual sort of approximation method, they must have their
source in the evolution equations. This is easily seen in the present framework: writing out the
Hab term in (3.16) after substituting (3.21) we find:

Hab = (−λ+ 4λ2 U)Z̈ab + 8λ2 Żab
,cW

c +4Zab + 4λ2 ZcdZab
,cd. (5.1)

The highest t-derivative has a factor λ in front and will disappear at λ = 0 (compare (3.18)),
leading to an additional constraint equation. If we approach the time evolution as a sort of
ordinary differential equation for initial data on hypersurfaces of constant t, we have to divide
by λ to solve for these t-derivatives: the equations are thus seen to be singular at λ = 0. In such
a situation only some of all possible ε-dependent families of initial data lead to solutions which
are regular at λ = 0, because at least Zab(0) can not be specified arbitrarily.

Let us assume that we want to obtain a post-Newtonian approximation based on expansion
in powers of ε. As described in the introduction, the first step is to look at the families of
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data belonging to such Cω families of solutions. By adding a few technical assumptions (the
Laplacian is bijective, derivatives commute, and the equations of motion can be solved for the
time derivatives of the matter variables), it can be shown that Zab(ε) and Żcd(ε) on the initial
hypersurface are already completely determined by the matter variables. I conjecture that this
property is the only requirement to be fulfilled by the data:

Conjecture: There is a special kind of initial value problem with additional constraints

for Zab and Żcd, in which the only free data are the matter variables, and in which a Cω

family (in ε) of initial data will generate a Cω family of solutions.

This initial value problem would obviously be an extension of the corresponding Newtonian
problem, in which Zab and Żcd do not appear. One might speculate that its solutions would turn
out to have in some sense no degrees of freedom for gravitational radiation. If this conjecture
should turn out to be true, the breakdown of post-Newtonian methods could from the point
of view of the Cauchy problem be entirely attributed to the simultaneous and incompatible
assumptions of analyticity in ε and freedom to choose Zab and Żcd.

However, as we have seen it is not really necessary to consider families of solutions, and therefore
the question of their ε-dependence seems not very fruitful. The approximation method given by
the prescription in section 2 requires as input merely the initial data set x1 of the relativistic
solution to be approximated and a suitable Newtonian starting point x0. This of course does
not imply that a similar approach to the evolution equations would circumvent the singularity
problem, because the implicit function theorem requires that the equations have to be at least
C1 in all the variables, including λ. But this problem rests entirely on the (λ = 0)-plane in the
space of solutions. It might therefore happen that one merely has to find a suitable way to choose
x0 and to move from there into the (λ > 0)-region and into a sufficiently small neighbourhood of
the solution in order to obtain existence, uniqueness, and a sequence converging to the solution.
From the point of view of ε-dependent families of solutions this seems to be identical with
choosing the first few Taylor coefficients of Zab(ε) and Żcd(ε) such that the equations are well-
behaved if restricted to this subset. Presumably one can by properly choosing a sufficient number
of Taylor coefficients obtain every level of differentiability for the resulting family of solutions.
The conjecture above is a statement about what happens if we choose all coefficients suitably.
There are indications [24] that a proof along these lines is possible for the equations described
here.

But even if we can solve these problems satisfactorily, we cannot expect that post-Newtonian
approximations are possible for all relativistic space-times. The range of applicability will be
locally limited by the strength of relativistic phenomena, but we also have to expect that it
will in general always be bounded in space and in time. The statement derived here for the
constraints suggests that the function spaces can be chosen such that for asymptotically flat
space-times there is no spatial limitation, and perhaps a corresponding result can be obtained
for the evolution equations. However, it seems likely that the resulting space-times will not
be as general as we could wish, particularly in the point of gravitational radiation. Of course,
Newtonian theory is mainly good at describing the motion of gravitationally interacting bodies,
and it is unfair to demand of it a basis for approximating an effect it does not know. Nevertheless,
it would be nice to have an approximation method yielding good results for the motion of stars
as well as for the gravitational radiation generated by them. This is the motivation for matching
a post-Newtonian approximation in the near zone to a post-Minkowskian approximation in the
far zone. But there is also another approach which perhaps is even better suited to this problem:
the post-Newtonian method based on the characteristic initial value problem and proposed by
Winicour [25]. It would seem profitable to attack this problem in a similar spirit as done here
for the Cauchy problem.
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