
Safety and Authentication

Martin Lottermoser
http://home.htp-tel.de/lottermose2

Version 1.5 (2015-09-07)

Contents

1 Introduction 1

2 Why We Shouldn’t Focus on Confidentiality 2

3 Why Authentication Provides Integrity 2

4 Why is Authentication Safety-Related? 3

5 Consequences for Performing Authentication 4

6 Possible Solutions 4
6.1 Execution Model for Safety-Related Systems . 4
6.2 Everything in the Safe Core . 5
6.3 Using a Safe Cryptographic Processor . 5
6.4 Using a Non-Safe Cryptographic Processor . 5

7 Conclusion 6

Appendix 7

1 Introduction

In recent years, IT security incidents have increased in number or have become more publically visible. This
has resulted in pressure on organizations selling IT components or offering IT-based services to control such
threats. While many developed countries have had appropriate conventions or regulations in place for at
least two decades, this typically applied only to governmental IT infrastructure. But now some countries
(e.g., Germany [1]) have started to encourage or enforce certain IT security measures also in commercially
available products, in particular those where a disruption of “normal” operation affects a large number of
people or where a failure would have unacceptable consequences (critical infrastructure).

This does not seem much of a problem for organizations which offer “safe” (no harm to persons) components
or services1 as they have already had to take measures in their systems and procedures which provide a
substantial level of security, mainly because the primary means for achieving safety (isolation of parts and
comparing results between redundant parts) makes malicious attacks much more difficult. However, this
aspect is partially counteracted by an increasing demand for remotely controlled systems, due to the desire
to reduce system reaction times and to eliminate operator errors by automation2; the larger the network
connecting such components becomes, the more difficult it is to control access to the network. This means

1My personal interest is mostly directed at railway signalling systems and that in the context of European standards [3, 4,
5, 6], but I believe that the main body of my argument is independent of that.

2Automation is also attractive because a reduction in personnel may lower operating costs.

1

http://home.htp-tel.de/lottermose2

2 Safety and Authentication

that at least for data communication, isolating the parts is no longer a feasible means for achieving safety
and hence such systems become exposed to security threats with possibly safety-related consequences.

Operators and vendors of safety-related systems therefore have had to consider how to counter such threats.
I’ve seen discussions on this topic to focus on two aspects of solutions:

1. Full use of cryptography (confidentiality, authentication, and integrity) for all data exchanged

2. Cryptographic endpoints are added to existing parts by placing the former in non-safe components
outside of safety-related (SIL > 0) areas but still within an access-controlled environment, similar to
existing solutions for connecting access-controlled networks over larger distances through VPN-based
technology (“access protection layer” [5, figure C.3]).

I consider both theses aspects of solutions to be faulty because, in my opinion, authentication is safety-
related, confidentiality is not, and the usual cryptographic measures for ensuring authenticity already provide
integrity.

The main body of this article gives the reasons for my opinion and points out some consequences for
implementations.

2 Why We Shouldn’t Focus on Confidentiality

Messages exchanged within a safety-related system are usually concerned with the current state of the system
and commands to change it; if an attacker gains knowledge of these data, this by itself has no consequence
at all for the safety of the system.

But these data are also usually very short and simple and do not contain confidential or vendor-proprietary
information, hence there is no need for the system’s vendor to protect it. Hiding this information from
listeners might look advantageous to the operator, but I consider that to be similar to the common “security
by obscurity” fallacy, meaning that it doesn’t work:

• One aspect of the increasing number of remotely-controlled systems is that components from different
vendors have to interact. This means that the interfaces and hence the structure of the data exchanged
are known to more than one organization. The operator can’t expect that an attacker will not get
access to these specifications at the source.

• Protecting information about the current state of the system cannot be completely achieved by en-
crypting the corresponding messages. (If you don’t want an attacker to know whether a particular
railway signal will let a train pass, how do you prevent him/her from just looking at it?)

In addition, encrypting the data traffic has the disadvantage that monitoring systems must be cryptograph-
ically aware and have to be administered accordingly; this adds to operating costs and prevents the most
confidential solution where the key needed for decryption is only known to the recipient. Note also that safety-
related components are usually embedded systems with limited computing resources; encrypting messages
might occupy a substantial part of these resources.

This should, however, not be understood as a claim that confidentiality should be omitted from safety-
related systems. I’m just saying that (a) it is not related to safety, (b) its security benefit is low, and (c) its
implementation cost is high. If we can get confidentiality with small effort, we might as well take it, but
other aspects of a safety-related system are much more important.

3 Why Authentication Provides Integrity

If an entity receives a message3 claiming to come from a particular sender and the sender is unknown or the
medium used for transmission might have been tampered with, the recipient should determine whether the
claim is true (authentication).

The only cryptographically trustworthy and at the same time feasible methods for authentication I know
of are based on a suitable public-private key pair [2]. The sender uses his/her private key to encode some

3I’m only considering connection-less communication in this article. Connection-oriented methods of communication are
subject to the same problems, but restricted to the phase of establishing a connection; they then typically try to switch to
simpler procedures for a certain interval of time, repeating this process until the connection is terminated.

Safety and Authentication 3

message-related data and transmits the result to the recipient; the recipient applies the sender’s public key
to the data and verifies the decoded data against the message. If the check is successful, the recipient knows
that only someone with knowledge of that particular private key can have created the message. The final step
is then to ensure that this key is indeed associated with the claiming entity; this can be achieved through
a trust database of key-identity associations for which the recipient is certain that knowledge of the private
key has not spread beyond the owning entity.4

In principle it seems possible for the sender to encode the entire message and to only transmit those data.
However, the two transformations need non-negligible computing resources scaling with the message’s size,
and the recipient has no other data against which the decoded message can be checked. Such a procedure
can still be feasible if both partners have sufficient resources and the message has enough structure (e.g.,
a “magic” string or a CRC field) to permit the recipient to perform a validity check of sufficiently high
discernment on the decoded message alone.

message

hash value

signature

hash function

private key

Sender

message

hash value

signature hash value’

= ?
yes

authentic message

Trust

DB

hash function

...

public key

identity

Recipient

Figure 1: Verification of cryptographic signatures

However, it is much more efficient to send the message in unencoded form, accompanied by an encoded
hash value derived from the message (cryptographic signature, also known as “message authentication code
(MAC)”; see figure 1). The recipient determines the hash value the received message has and compares it
with the decoded value of the signature. If they are equal and the hash function is cryptographically strong
(i.e., it is considered practically impossible that an attacker can have substitued a different message with
the same hash value), the recipient can conclude that the owner of the private key has indeed applied the
hash function to this message.

But this means that a successful process of authentication already has checked that the message has not
been modified in transit! The hash value underlying the signature is an integrity checksum and could be
used for that purpose even if the key-identity association were unknown. Hence such a check for authenticity
already performs a check for integrity.

For simplicity I shall also assume that the signature is sufficiently good at providing an integrity check at
the level of safety needed (“cryptographic safety code” [5, appendix C.2]). This is a requirement on the
hash function, but as cryptographic hash functions have to be sufficiently robust against deliberate attacks
I would expect that to hold at even higher level against random transmission errors. Should this assumption
turn out not to be true, one can either choose another hash function or include a safety code within the
unencoded data.

4 Why is Authentication Safety-Related?

Consider a system which controls the flow of a fluid into and out of a vat. There are flow sensors and valves at
both ends and it is the job of the system to ensure that the vat does not overflow. If the system’s controlling

4Although it is possible to fill this database once in a secure environment, the usual method is to only provide a small number
of trusted associations initially and to extend the list later by means of “certificates”, i.e., messages containing key-identity
associations of previously untrusted entities but signed by an already trusted one. Such key management procedures are outside
the scope of this article.

Version 1.5

4 Safety and Authentication

entity now incorrectly identifies the sensor’s message from the entry to come from the sensor at the exit and
vice versa, the system will instead ensure that the amount of fluid in the vat does not drop below a certain
level, which means that the vat might now overflow. If the fluid has dangerous properties, preventing the
overflow will have to be a safety requirement. A misidentification of the source of a message is then a cause
for a safety hazard, hence the process of authentication has to be a safety function.

Note that this argument does not even consider security threats: a failure in authentication may already lead
to a safety hazard in systems where access to the system is strictly controlled.

5 Consequences for Performing Authentication

If authentication is a safety function, it must be performed in a part of the system which is safety-related,
i.e., in a part with SIL > 0.

In the presence of security threats, authentication must be cryptographically protected as described in
section 3. As a failure at this step still may lead to a safety hazard, at least this part of cryptographic
protection has to satisfy safety requirements and therefore also has to be executed in safety-related equipment.

Note that the reference architecture of EN 50159 [5, figure 1] assumes that “safety related cryptographic
techniques” may be performed outside safety-related equipment, in particular outside the safety-related
transmission function (which typically performs basic authentication based on source identifiers). In view of
security threats, I consider that split to be insufficiently safe.5

6 Possible Solutions

6.1 Execution Model for Safety-Related Systems

In what follows, I’m going to assume an execution model with two components providing a “safe core” (see
figure 2):

1. An environment (hardware and firmware) which provides a platform for the execution of software

Given the desired SIL s for the system, this platform must have the property that, executing any
software of SSIL s, the resulting system will achieve SIL s.
Basically, the execution environment must be capable of guaranteeing that correct software would
execute correctly, at the level of safety desired. This typically means that such a platform will contain

(a) one or more processors (CPUs) and
(b) certain amounts of volatile and
(c) non-volatile memory,

together with measures to guard against hardware failures or systematic errors in the parts making up
this platform.
The execution environment must also be secure in the sense that it can’t be tampered with. This
typically entails access control measures like locked cabinets with intrusion detection for the hardware
and steps to protect against modifications of the software to be executed.

2. Software of SSIL s executing on the platform

The key point here is that the software component can’t guard itself completely against failures in those
hardware components (CPU and memory) which are absolutely essential for executing software, because, if
they fail, any checks performed on them by the software may give incorrect results. Therefore these essential
parts must be sufficiently safe and secure by themselves. However, I should like to point out two restrictions
on this requirement.

The first is that we need safety and security only as a service offered at the interface to the software, i.e.,
it is not necessary for all parts of the execution environment to be safe or secure. Thus these requirements
restrict the execution environment as a platform, and not every part of its implementation.

5Note also that, in view of the increasing sophistication of security threats, the assumption that a local-area network can be
access-controlled becomes decreasingly convincing. For example, solutions like an “access protection layer” [5, figure C.3] are
insufficient to counter attacks which might take over one of the entry points into the network (single point of failure).

Safety and Authentication 5

Safe core of SIL s

Software of SSIL s

Execution environment

enabling SIL s for SSIL s

External

component

Interface controlled by the safe core

Figure 2: Structure and environment of a safe core

The second point is that these properties are only necessary for the execution platform and not for all
the hardware components accessed by the software. Safety-related software may directly communicate with
another component which is not part of the execution platform and which might even not be safe, provided
the platform and the software can sufficiently control the influence of these external components on the safe
core. A typical example is a passive component which accepts commands from the core and in return offers
data to be fetched whenever the core is ready. The ability to control the interfaces in this or a similar manner
is an essential and safety-related requirement for all the core’s external interfaces.

6.2 Everything in the Safe Core

If authentication is a safety function, the simplest solution for satisfying the safety requirements is obviously
to perform the entire process of authentication (see figure 1) in the safe core (see figure 2) where we have all
the components needed at our disposal, including non-volatile memory for the trust database.

However, two aspects complicate matters:

• Safe cores are often implemented in embedded systems, processors for embedded systems are usually
much slower than processors for PCs, and cryptographic operations (in particular with public or private
keys) are time-consuming.

• Authentication is only the recipient’s part in successfully passing a message known to be authentic: we
also have to find a way for storing the sender’s private key in such a manner that it does not incur a
security leak and hence does not pose a safety risk.

Both of these aspects suggest that a separate component dedicated to cryptographic operations and hiding
a secret key might be advantageous; such cryptographic processors are commercially available.

6.3 Using a Safe Cryptographic Processor

If we had a safe cryptographic processor, we could perform the entire process of signature verification
(figure 1) within that component. The processor could be given a message and its signature and could either
return an authentication failure or indicate that the message is authentic. Again, however, reality intervenes:

• If the cryptographic processor is a separate external component like shown in figure 2, we have at least
to guard against transmission errors6 on the line between the safe core and the cryptographic processor.
(If the line were safe, this connection as well as the cryptographic processor could be considered to be
part of the safe core, and that is not much different from the solution already considered in section 6.2.)

• Commercially available cryptographic processors are unlikely to be certified as safe in the first place.

6.4 Using a Non-Safe Cryptographic Processor

The real challenge is therefore how to use a non-safe (but hopefully secure) cryptographic processor such
that authentication is still safe.

6If access to the line cannot be strictly controlled, we also would have to guard against man-in-the-middle attacks. Hence
we would have to perform authentication on this line as well, leading to a chicken-egg problem.

Version 1.5

6 Safety and Authentication

The key idea for the solution I wish to propose is that no decision which is safety-related and message-specific
may be delegated to the cryptographic processor. Therefore, the comparison between the hash value of the
message and the decoded hash value from the signature (see figure 1) must be performed by the safe core.
We can (and should) delegate the decoding of the signature to the processor, but computing the hash value
from the message is again something we can’t safely trust to the processor7 because, due to some failure, the
second of these two operations might just lead to the processor returning the result of the first, thus leading
to a message which is always declared to be authentic although it might not be.

I’m therefore assuming a cryptographic processor with the following interface:

1. The processor can be directly accessed from the safe execution environment and only from it. Thus
the processor is an access-controlled part of the safe core, but it need not be safety-related itself.

2. The processor offers a command to create an unpredictable new secret key which will be stored securely
within the processor.

3. The processor can be queried for the public key belonging to its current secret key.

4. The processor offers commands for encoding bit strings with its secret key, at least for the lengths
intended for the hash function.

5. The processor offers commands for decoding bit strings with public keys also given as parameters to
the commands; again, this must be possible at least for the lengths intended for the hash function and
for the type of keys used by other participants.

Given a processor with these properties,

• initial trust databases can be built in a secure environment,

• a sender can have the processor encode the hash value without divulging the secret key, and

• the recipient can speed up decoding the signature by offloading the task to the processor.

Computing the hash value on both sides, sender and recipient, should be executed in the safe core, and the
final task of comparing the two hash values must be executed there. Note also that the trust database must
be held in the safe core.

With such an architecture, failures in the cryptographic processor or in communicating with it can affect
only the transformations of the signature:

• If the processor at the sender fails, the message will have an invalid signature, will be (correctly)
classified as invalid by the recipient, and will be discarded.

• If a recipient receives a valid message and the processor at the recipient fails, the recipient will incor-
rectly consider the message to be invalid and will discard it. This is effectively the same as the message
not reaching the recipient at all and is a situation the recipient must be able to handle anyway.

• If a recipient receives an invalid message and the processor at the recipient fails, the decoded hash
value returned by the processor might erroneously agree with the value derived from the message. This
is a risk, but given the length and robustness of typical cryptographic hash functions and the fact that
the processor has not seen the unencoded message this event is wildly unlikely.

Thus it is indeed possible to perform authentication safely with a non-safe cryptographic processor.

7 Conclusion

In summary, I consider the following statements to be the salient points of this article:

1. Confidentiality is not safety-related.

2. Correct authentication is a safety requirement and the function providing it must therefore be executed
with SIL > 0.

3. It is possible to use a non-safe cryptographic processor to implement a safe authentication function,
but the processor must be placed within the access-controlled region of the safe core and it must not
gain direct knowledge of the content of messages.

7But if we had two safely independent cryptographic processors, we might use one for decoding the signature and the other
for computing the hash value. Whether that is useful will largely depend on the computing power available and is therefore not
pursued further in this article.

Safety and Authentication 7

Appendix

References

[1] Bundesrepublik Deutschland. Gesetz zur Erhöhung der Sicherheit informationstechnischer Systeme (IT-
Sicherheitsgesetz) — Vom 17. Juli 2015. Bundesgesetzblatt, Jahrgang 2015, Teil I(31):1324–1331, July
2015.

[2] Whitfield Diffie, Martin E. Hellman. New Directions in Cryptography. IEEE Transactions on Information
Theory, IT-22(6):644–654, November 1976.
URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1055638

[3] European Committee for Electrotechnical Standardization (CENELEC), Brussels. Railway applica-
tions — The specification and demonstration of Reliability, Availability, Maintainability and Safety
(RAMS), September 1999. EN 50126, English version. In May 2006, this standard was renamed to
EN 50126-1.

[4] European Committee for Electrotechnical Standardization (CENELEC), Brussels. Railway applica-
tions — Communication, signalling and processing systems — Safety related electronic systems for sig-
nalling, February 2003. EN 50129, English version.

[5] European Committee for Electrotechnical Standardization (CENELEC), Brussels (Belgium). Railway
applications — Communication, signalling, and processing systems — Safety-related communication in
transmission systems, September 2010. EN 50159, English version.

[6] European Committee for Electrotechnical Standardization (CENELEC), Brussels (Belgium). Railway
applications — Communication, signalling and processing systems — Software for railway control and
protection systems, June 2011. European Standard EN 50128, English version.

Abbreviations

CPU Central processing unit
CRC Cyclic redundancy check
DB Database
IT Information technology
PC Personal computer
SIL Safety integrity level
SSIL Software SIL
VPN Virtual private network

History of Changes

1.4 2015-08-27 First distributed version
1.5 2015-09-07 Added access-control requirements to the concept of an execution platform; minor

editorial changes for clarification.

Copyright and License

c© Martin Lottermoser, 2015

Address:

Martin Lottermoser
Greifswaldstr. 28
38124 Braunschweig
Germany

Although I encountered the problems described at the outset of this article in the course of work for my
employer, solving them was and is not part of my responsibilities: I’m not employed as a systems architect or
software architect, nor am I involved in any aspect of safety assessment or safety management. I’ve therefore
created this article entirely in my spare time and at home (actually while I was on holiday), and my employers
(past and present) are not responsible for any statements I’ve made here.

Version 1.5

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1055638

8 Safety and Authentication

This article may be used under the terms of the Creative Commons License “Attribution-NoDerivatives 4.0
International” (CC BY-ND 4.0):

http://creativecommons.org/licenses/by-nd/4.0/

The term “derivative work” or “adaptation” is meant to apply only to modifications of this article, not to
using the ideas described here. Do the latter at your own risk.

http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	Why We Shouldn't Focus on Confidentiality
	Why Authentication Provides Integrity
	Why is Authentication Safety-Related?
	Consequences for Performing Authentication
	Possible Solutions
	Execution Model for Safety-Related Systems
	Everything in the Safe Core
	Using a Safe Cryptographic Processor
	Using a Non-Safe Cryptographic Processor

	Conclusion
	Appendix

